
Virtual Learning Factory Toolkit

Output 1

Report

Project Reference: 2018-1-EE01-KA203-047094

Table of Contents

1. Virtual Learning Factory Toolkit Framework

2. VLF Knowledge Base

2.1 Factory Data Model

2.2 Instantiation of Factory Models

3. VLF Tools and Libraries

3.1 OntoGui

3.2 jsimIO

3.3 VEB.js

3.4 ApertusVR

3.5 MTM

3.6 MOST

3.7 RULA

3.8 OCRA

1. Virtual Learning Factory Toolkit Framework
The Virtual Learning Factory Toolkit (VLFT) is a set of existing digital tools to support
advanced engineering education in manufacturing. The aim of the VLFT is to bring back to
the engineering students the results of research activities in the field of digital
manufacturing related to the modeling and analysis of a manufacturing system, virtual and
augmented reality, as well as the role of the human workers in a factory.

VLFT grounds on a common knowledge base that consists of data model and data
repository relying on semantic web technology. In principle, any digital tool can be
integrated in the VLFT framework if it is possible to access and modify its internal data
structures (e.g. via exchange files or an API), thus creating data flows with the knowledge
base, possibly in an automated way.

VLFT Framework

The Virtual Learning Factory Toolkit (VLFT) documentation consists of the following main
sections:
- VLF Knowledge Base
- VLF Tools and Libraries

2. VLF Knowledge Base

The VLF Knowledge Base of VLFT is grounding on a standard, extensible, and common
data model for the representation of factory objects related to production systems,
resources, processes and products. This factory data model is developed as an OWL
ontology, since this language provides a way to generate a flexible data model integrating
different knowledge domains, enabling knowledge sharing between several applications
and a fluent flow of data between different entities. In particular, the VLF Knowledge Base
exploits already existing technical standards (e.g. Industry Foundation Classes, UML
Statechart, W3C SSN/SOSA) and research results by CNR-STIIMA and Politecnico di
Milano-Mechanical Engineering Department.

The VLF Knowledge Base will be continuously extended by adding concepts to the data
model that is used to instantiate models representing academic use cases and industrial
case studies. The results of the modelling activities will be stored in the knowledge base to
be used for future teaching and training purposes. The knowledge base can be
implemented adopting different technologies ranging from file-based solutions to relational
databases and to native triple stores.

Table of Contents

https://www.w3.org/OWL/
https://technical.buildingsmart.org/standards/ifc/
https://www.omg.org/spec/UML/About-UML/
https://www.w3.org/TR/vocab-ssn/
mailto:walter.terkaj@stiima.cnr.it

2.1 Factory Data Model
A suitable factory data model must be able to cover and integrate heterogeneous
knowledge domains, while guaranteeing extensibility. Herein, a modular ontology-based
Factory Data Model [7] is adopted to formalize the information that is in particular relevant
to the design and management of factories and manufacturing systems. The ontology
reuse, even if often applied in a limited fashion, represents a key best practice that was
followed in this work. Indeed, already existing ontologies have been reused, integrated, and
extended.

OWL Ontology - Modular Architecture

The modular data model architecture adopted by VLFT consists of OWL ontology modules.
An OWL ontology can be serialized in various formats (e.g. Turtle, RDF/XML, OWL/XML)
and can be opened with different ontology editors (e.g. Protégé).

 The ontology architecture consists of he following modules:

list, an ontology defining the set of entities used to describe the OWL list pattern [1]
express, ontology mapping the concepts of EXPRESS language (International
Organization for Standardization, 2004) to OWL [1]
IFC4_ADD1, the ifcOWL ontology that is converted from the IFC standard defined in
EXPRESS language [2]
time, an ontology defining concepts related to time [3]
fsm, an ontology defining the concepts required for modelling finite state machines [4]
sosa, the Sensor, Observation, Sample, and Actuator (SOSA) Core Ontology [5]
ssn, the Semantic Sensor Network Ontology [5]
statistics, an ontology that defines probability distributions and descriptive statistics
concepts [6]
expression, an ontology modelling algebraic and logical expressions [6]
osph, an ontology modelling Object States and Performance History, while integrating
the ontology modules fsm, statistics, ssn, sosa, expression [6]
IFC4_ADD1_extension, an ontology module integrating osph and IFC_ADD1_rules
modules, while adding general purpose extensions to IFC_ADD1 [7]

2. VLF Knowledge Base

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/owl2-xml-serialization/
https://www.w3.org/wiki/Ontology_editors
https://protege.stanford.edu/

Ontology modules in the Factory Data Model

factory, a specialization of IFC_ADD1 with definitions related to production processes,
part types, manufacturing systems and machine tools [7]

Modules and Prefixes

The following table reports the list of prefixes that have been defined with reference to
vocabularies and ontology modules. All modules are available online at the same address,
except fsm that can be found at http://people.cs.aau.dk/∼dolog/fsm/fsm.owl.

The whole set of ontology modules can be found also in the "repository" folder of the
OntoGui installation.

Each ontology module contains the definition of OWL classes and properties and some
examples are given in the next subsection.

Prefix Value

xsd http://www.w3.org/2001/XMLSchema#

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#

rdfs http://www.w3.org/2000/01/rdf-schema#

owl http://www.w3.org/2002/07/owl#

http://people.cs.aau.dk/~dolog/fsm/fsm.owl
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2002/07/owl#

expr https://w3id.org/express#

list https://w3id.org/list#

fsm http://www.learninglab.de/~dolog/fsm/fsm.owl#

stat http://www.ontoeng.com/statistics#

time http://www.w3.org/2006/time#

ex http://www.ontoeng.com/expression#

sosa http://www.w3.org/ns/sosa/

ssn http://www.w3.org/ns/ssn/

osph http://www.ontoeng.com/osph#

ifc http://ifcowl.openbimstandards.org/IFC4_ADD1#

ifcext http://www.ontoeng.com/IFC4_ADD1_extension#

fa http://www.ontoeng.com/factory#

Object Typing pattern

Ontology modules that are based on the IFC standard (i.e. ifcOWL) take advantage of
pattern of object typing thanks to the definition of two main classes: ifc:IfcObject and
ifc:IfcTypeObject.

Class ifc:IfcTypeObject (and its subclasses, e.g. fa:MachineToolType) can be used to define
“specific information about a type, being common to all occurrences of this type”. Instances
of ifc:IfcTypeObject are represented by sets of properties which apply to all the associated
instances of ifc:IfcObject and its subclasses. Object types can be however directly
instantiated without being assigned to instances of ifc:IfcObject [8][9]. This approach is
useful whenever the user needs to be generic or non-committal while defining the resources
needed or used to execute a process. The link between instances of ifc:IfcObject and
ifc:IfcTypeObject is realized via properties ifcext:typesObject and ifcext:isDefinedByType.

https://w3id.org/express#
https://w3id.org/list#
http://www.learninglab.de/~dolog/fsm/fsm.owl#
http://www.ontoeng.com/statistics#
http://www.w3.org/2006/time#
http://www.ontoeng.com/expression#
http://www.w3.org/ns/sosa/
http://www.w3.org/ns/ssn/
http://www.ontoeng.com/osph#
http://ifcowl.openbimstandards.org/IFC4_ADD1#
http://www.ontoeng.com/IFC4_ADD1_extension#
http://www.ontoeng.com/factory#
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/
https://standards.buildingsmart.org/IFC/DEV/IFC4/ADD2_TC1/OWL/index.html
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/

In practical applications, subclasses of ifc:IfcTypeObject are instatiated to populate a
catalog of models/types/templates (e.g. machine models in the catalog of a machine tool
builder), whereas subclasses of ifc:IfcObject are instatiated to define the occurrences
composing a specific factory configuration.

References

1. Pauwels P, Terkaj W (2016) EXPRESS to OWL for construction industry: Towards a
recommendable and usable ifcOWL ontology. Automation in Construction, 63:100–
133. ISSN: 0926-5805. doi:10.1016/j.autcon.2015.12.003

2. Pauwels P, Krijnen T, Terkaj W, Beetz J (2017) Enhancing the ifcOWL ontology with an
alternative representation for geometric data. Automation in Construction, 80:77-94.
ISSN: 0926-5805. doi:10.1016/j.autcon.2017.03.001

3. Time Ontology in OWL, https://www.w3.org/TR/owl-time/
4. Dolog P (2004) Model-Driven Navigation Design for Semantic Web Applications with

the UML-Guide. In Proc. ICWE, pages 75–86, 2004.
5. Semantic Sensor Network Ontology, https://www.w3.org/TR/vocab-ssn/
�. Terkaj W, Schneider GF, Pauwels P (2017) Reusing Domain Ontologies in Linked

Building Data: the Case of Building Automation and Control. Proceedings of the 8th
Workshop Formal Ontologies Meet Industry, Joint Ontology Workshops 2017, CEUR
Workshop Proceedings, vol. 2050.

7. Terkaj W, Gaboardi P, Trevisan C, Tolio T, Urgo M (2019) A digital factory platform for
the design of roll shop plants. CIRP Journal of Manufacturing Science and Technology,
26:88-93. ISSN: 1755-5817. doi:10.1016/j.cirpj.2019.04.007

�. Liebich, T., Adachi, Y., Forester, J., Hyvarinen, J., Richter, S., Chipman, T., Weise, M. & Wix,
J. (2013). Industry foundation classes IFC4 official release.
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/

http://dx.doi.org/10.1016/j.autcon.2015.12.003
http://dx.doi.org/10.1016/j.autcon.2017.03.001
https://www.w3.org/TR/owl-time/
https://www.w3.org/TR/vocab-ssn/
https://doi.org/10.1016/j.cirpj.2019.04.007
https://standards.buildingsmart.org/IFC/RELEASE/IFC4/ADD2_TC1/HTML/

9. Borgo S, Sanfilippo EM, Sojic A, Terkaj W (2015) Ontological Analysis and Engineering
Standards: An Initial Study of IFC. In: Ebrahimipour V, Yacout S (eds) Ontology
Modeling in Physical Asset Integrity Management. Springer: 17-43.
https://doi.org/10.1007/978-3-319-15326-1_2

https://doi.org/10.1007/978-3-319-15326-1_2

OWL Classes

This section presents more details of the Factory Data Model in terms of OWL classes that
are useful to instantiate factory models while going through the ontology modules.

statistics

The statistics module represents basic probability distributions via semantic
characterization of key parameters. Representation of descriptive statistics.

expression

The expression module formalizes Algebraic and Logical expressions. An expression can
be decomposed in atomic, unary, binary, iterated binary, control flow expressions.

osph

The osph module models Object States and Performance History, while integrating the
ontology modules fsm, statistics, ssn, sosa, expression.

IFC4_ADD1 and IFC4_ADD1_extension

The ifcOWL ontology consists of three main classes: ifc:IfcContext, ifc:IfcObject,
ifc:IfcTypeObject.

The following table lists some subclasses of ifc:IfctObject that can be exploited to model a
factory. If available, a subclass of ifc:IfcTypeObject is paired with the corresponding
sublcass of ifc:IfctObject, as it can be exploited according to the object typing pattern.

ifc: prefix stands for http://ifcowl.openbimstandards.org/IFC4_ADD1#

Subclass of
ifc:IfcObject

Description
Subclass of
ifc:IfctTypeObject

ifc:IfcBuilding Building

ifc:IfcDoor Door ifc:IfcDoorType

ifc:IfcColumn Column of a building ifc:IfcColumnType

ifc:IfcRoof Roof of a building ifc:IfcRoofType

ifc:IfcWall Wall of a building ifc:IfcWallType

ifc:IfcWindow Window of a building ifc:IfcWindowType

ifc:IfcSensor
Sensor subclass also of
sosa:Sensor

ifc:IfcSensorType

ifc:IfcActuator
Actuator subclass also of
sosa:Actuator

ifc:IfcActuatorType

http://ifcowl.openbimstandards.org/IFC4_ADD1#

ifc:IfcElementAssembly Complex element assembly ifc:IfcElementAssemblyType

ifc:IfcIfcTransportElement
Generalization of all transport
related objects

ifc:IfcTransportElementType

ifc:IfcTask Unit of work ifc:IfcTaskType

factory

The factory module specializes IFC_ADD1 and controlSystem modules with definitions
related to production processes, part types, manufacturing systems and machine tools.

The following tables list some subclasses of ifc:IfctObject that can be exploited to model a
factory. If available, a subclass of ifc:IfcTypeObject is paired with the corresponding
sublcass of ifc:IfctObject, as it can be exploited according to the object typing pattern.

fa: prefix stands for http://www.ontoeng.com/factory#

Subclass of
ifc:IfcProduct

Description
Subclass of
ifc:IfctTypeProduct

fa:Artifact Part that is the result of a production activity fa:ArtifactType

fa:BufferElement
Object or space dedicated to hosting objects
(e.g. artifacts, pallets)

fa:BufferElementType

fa:MachineTool Generic machine tool fa:MachineToolType

fa:Robot Robot fa:RobotType

fa:Pallet
Object dedicated to hosting artifacts that are
transported in a system (e.g. production
system).

fa:PalletType

http://www.ontoeng.com/factory#

fa:Tool Tool fa:ToolType

Subclass of
ifc:IfcTask

Description
Subclass of
ifc:IfctTaskType

fa:AssemblyTask
Task executing an assemby
operation.

fa:AssemblyTaskType

fa:DisassemblyTask
Task executing an disassemby
operation.

fa:DisassemblyTaskType

fa:MaintenanceTask
Task executing a maintenance
operation.

fa:MaintenanceTaskType

fa:ManufacturingTask
Task executing a manufacturing
operation.

fa:ManufacturingTaskType

fa:MachiningTask
Task executing a manufacturing
operation.

fa:MachiningTaskType

fa:QualityControlTask Task executing a quality control. fa:QualityControlTaskType

fa:TransportTask Task executing a transportation. fa:TransportTaskType

Subclass of
ifc:IfcControl

Description

fa:ProductionPlan
Plan of activities to be executed by a production system in
terms demanded volume of artifacts, available resources,
assignements, adopted control policies

fa:ProductionSchedule
Component of a fa:ProductionPlan specifying the demanded
volumes for a type of artifact

SPARQL Queries

SPARQL is a W3C query language standard to retrieve and manipulate data stored in
Resource Description Framework (RDF) format, thus including OWL ontologies.

The use of SPARQL queries asks for a SPARQL Endpoint, i.e. a server that can handle HTTP
requests. SPARQL Endpoints are typically provided by RDF stores.

This section presents examples of SPARQL Queries tailored for the Factory Data Model.
These examples must be intended as templates that can be customized by specifying RDF
Datasets.

Get part types
Get process plans

Get Part Types

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 1
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 2
PREFIX factory: <http://www.ontoeng.com/factory#> 3
select distinct ?parttype 4
WHERE { 5

 ?parttype rdf:type/rdfs:subClassOf* factory:ArtifactType . 6
}7

Get Process Plans

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 1
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> 2
PREFIX ifc: <http://ifcowl.openbimstandards.org/IFC4_ADD1#> 3
PREFIX ifcext: <http://www.ontoeng.com/IFC4_ADD1_extension#> 4
PREFIX factory: <http://www.ontoeng.com/factory#> 5
select distinct ?parttype ?pplan 6
WHERE { 7
?parttype rdf:type/rdfs:subClassOf* factory:ArtifactType . 8
?pplan rdf:type/rdfs:subClassOf* ifc:IfcTaskType . 9
?parttype ifcext:hasAssignedObject|^ifcext:hasAssignmentTo ?pplan . 10

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/
https://www.w3.org/TR/sparql11-query/#specifyingDataset

}11

SPARQL Updates

SPARQL 1.1 Update is a W3C language to create and modify RDF graphs, thus including
OWL ontologies.

The use of SPARQL updates asks for a SPARQL Endpoint, i.e. a server that can handle
HTTP requests. SPARQL Endpoints are typically provided by RDF stores.

This section presents examples of SPARQL Updates tailored for the Factory Data Model.

https://www.w3.org/TR/sparql11-update/
https://www.w3.org/

2.2 Instantiation of Factory Models
This section explains how a factory model can be instantiated in terms of:

Assets composing the model.
3D models representing assets, with possible upgrades for virtual reality.
Animations associated with assets using .json files.

Instantiated factory models can be stored in dedicated data repositories.

2. VLF Knowledge Base

Assets

Instantiation workflow

Assets are basic elements composing a model, e.g. physical objects like machine tools,
parts, conveyors, buffers, but also processes and plans.

Assets can be defined according to an instantiation workflow consisting of the following
steps:

spreadsheets
.json files
OWL ontology

Assets in Spreadsheet

A virtual factory model, including the 3D scene, can be defined in terms of assets by taking
advantage of a spreadsheet organized in two sheets:

"Context": definition of context setup.
"Assets": detailed definition of assets that are included (or not) in the scene. Assets not
included in the scene are models/templates that are referenced or could be later
instantiated in the scene.

The template (updated on 27/04/2021) can be downloaded. It is recommended not to
delete rows in the "Assets" sheet.

VF_assets_template.xlsx VF_assets_template.xlsx - 48KB

Two examples are available in the dedicated section.

Context

The Context sheet contains the following properties (all required):

"UnitOfMeasureScale": The default unit of measurement scale for distances (e.g. 0.01
stands for centimeter, whereas 1 stands for meter)
"Zup": is a boolean parameter specifying the convention for the 3-D Cartesian
coordinate system. The parameter is set to true if Z-axis is the vertical axis pointing up
from the ground (i.e. Zup convention), or set to false if the Y-axis is the vertical axis
pointing up from the ground (i.e. Yup convention). In both cases the right-handed
system convention is assumed.
"RepoPath": Path of the repository where the 3D models can be found. RepoPath can
be defined as absolute or as relative to the application path. The file path of 3D models
is defined relatively to RepoPath (e.g. '/repository/',
'https://example.com/datarepository/').

https://firebasestorage.googleapis.com/v0/b/gitbook-28427.appspot.com/o/assets%2F-Lh1dC9-F-cM6usakky7%2F-MZHWflQlxnRLx04dhsE%2F-MZHWvacphbiZXAgCp02%2FVF_assets_template.xlsx?alt=media&token=6a3a06f3-ba8a-4ae0-b251-6fbc3dd39064
https://en.wikipedia.org/wiki/Cartesian_coordinate_system#Three_dimensions
https://en.wikipedia.org/wiki/Cartesian_coordinate_system#Orientation_and_handedness

Cell “B1” in sheet "Context" returns the text as a .json file.

Assets

The Assets sheet contains items characterized by the following fields in columns:

"id": unique identifier of the asset [required]
“inScene”: equal to 1 if the asset is included in the scene, 0 otherwise [required]
"descr": textual static description of the asset [optional]
"type": the type of the asset, i.e. OWL class of the Factory Data Model it belongs to
[required]
"model": ID of the model of the asset (if existing), e.g. the model of a machine tool that
is described in a catalog. In turn, the model can have a model. Please refer to the Object
Typing pattern.
"file": file path of the 2D/3D model representation, as relative to the RepoPath
[optional]. The file can be available on a local or remote file system (see example), as
any online repository accessible via HTTPS (see example). The “file” property can be
used also as a reference to a specific component inside the hierarchy of a 3D model by
adding a hashtag and the ID of the component to the file path (e.g. #componentID').
For instance, the “file” property will have the value "FileName.glb#nodeId" if it refers to
a node with unique ID "nodeId" inside a GLTF file named "FileName.glb".
"unit": Unit of measure to interpret a 3D representation (e.g. 0.01 stands for centimeter,
whereas 1 stands for meter) [required if “file” is defined]
"position": The Position of the asset in terms of x, y, z values. If missing, the default
value is [0.0,0.0,0.0] or the value of the corresponding node in a GLTF hierarchy, if
available.
"rotation": The rotation of the asset as Euler angles YXZ defined in radians. If missing,
the default value is the rotation of the corresponding node in a GLTF hierarchy (if
available), otherwise [0.0,0.0,0.0].
"placementRelTo": ID of the asset with respect to which the placement (position and
rotation) is defined in relative terms. This means that a rototranslation must be applied
with respect to the placement of the asset identified by the value of placementRelTo.
This relation happens between nodes directly connected in a scene graph. For instance,
the placement of a pallet can be defined as relative to the placement of a conveyor.

https://en.wikipedia.org/wiki/Scene_graph

"parentObject": ID of the asset that is decomposed (it may be empty or missing) when
an aggregated asset is represented. If a parentObject is defined, then placementRelTo
is defined as equal to parentObject. However, if a placementRelTo value is defined, then
it is not necessarily also the parentObject. For instance, machine components
decompose a workstation, whereas a pallet doesn't decompose a conveyor.

In addition, the following optional fields can be used to further characterize the scene in
terms of relations and properties.

"connectedTo": list of assets ID that are connected downstream to the asset. The list
may be empty or missing [optional]
“assignmentTo": list of assignments to other assets. The list may be empty or missing
[optional]
“successors": successor of a task [optional]
“taskTime": execution time of a task [optional]
“bufferCap": buffer capacity [optional]
“TTF": time to failure (for devices like machines) in terms of probability distribution and
value [optional]
“TTR": time to repair (for devices like machines) in terms of probability distribution and
value [optional]
“duration": duration of a production plan [optional]
“quantity": quantity to be produced in a production plan [optional]

Examples

Examples of a scene with assets instantiated in a spreadsheet are available together with
the corresponding to the JSON files for simple cases, an assembled product, and a
workstation.

Assets in JSON

The assets composing a factory model, including the 3D scene, can be defined according to
the JSON schema described in this section. JSON (JavaScript Object Notation) is a
lightweight text-based data-interchange format that is easy to read/parse and
write/generate both for humans and machines. A .json file can be opened with any basic or
advanced text editor (e.g. NotePad++, Visual Studio Code).

The resulting .json files can be also used to instantiate the ontology Factory Data Model
thanks to the import functionality of OntoGui-Utlilities module.

Two examples are available in the dedicated section.

Schema

The .json schema consists of three root properties:

1. "context": definition of context setup.
2. "scene": definition of the 3D scene.
3. "assets": detailed definition of assets that are included or not in the scene. Assets not

included in the scene are models/templates that are referenced or could be later
instantiated in the scene.

Context

The context contains the following properties (all required):

"UnitOfMeasureScale": The unit of measure scale (e.g. 0.01 stands for centimeter,
whereas 1 stands for meter)
"Zup": is a boolean parameter specifying the convention for the 3-D Cartesian
coordinate system. The parameter is set to true if Z-axis is the vertical axis pointing up
from the ground (i.e. Zup convention), or set to false if the Y-axis is the vertical axis
pointing up from the ground (i.e. Yup convention). In both cases the right-handed
system convention is assumed.

https://www.json.org/json-en.html
https://notepad-plus-plus.org/downloads/
https://code.visualstudio.com/
https://en.wikipedia.org/wiki/Cartesian_coordinate_system#Three_dimensions
https://en.wikipedia.org/wiki/Cartesian_coordinate_system#Orientation_and_handedness

"RepoPath": Path of the repository where the 3D models can be found. RepoPath can
be defined as absolute or as relative to the application path. The file path of 3D models
is defined relatively to RepoPath (e.g. '/repository/',
'https://example.com/datarepository/').

Scene

The scene is an array consisting of asset IDs that are included in the 3D scene.

Assets

The assets array contains items characterized by the following properties:

"id": unique identifier of the asset [required];
"type": The type of the asset, i.e. OWL class of the Factory Data Model it belongs to
[required]
"model": ID of the model of the asset (if existing), e.g. the model of a machine tool that
is described in a catalog. In turn, the model can have a model. Please refer to the Object
Typing pattern.
"representations": Array of 2D/3D representations of the asset. Each item of the array
may have the following properties:

"file": file path of the 2D/3D model representation, as relative to the RepoPath
[optional]. The file can be available on a local or remote file system (see example),
as any online repository accessible via HTTPS (see example). The “file” property
can be used also as a reference to a specific component inside the hierarchy of a
3D model by adding a hashtag and the ID of the component to the file path (e.g.
#componentID'). For instance, the “file” property will have the value
"FileName.glb#nodeId" if it refers to a node with unique id "nodeId" inside a GLTF
file named "FileName.glb".
"unit": Unit of measure to interpret a 3D representation (e.g. 0.01 stands for
centimeter, whereas 1 stands for meter) [required if “file” is defined]

"position": The Position of the asset. If missing, the default value is [0.0,0.0,0.0];
"scale": The scaling of the asset. If missing, the default value is [1.0,1.0,1.0]. Scaling is
defined independently of the unit of measurement of the 3D representation (cf. “unit” in
“representations”);

"rotation": The rotation of the asset as Euler angles YXZ defined in radians. If missing,
the default value is the rotation of the corresponding node in the GLTF hierarchy (if
available), otherwise [0.0,0.0,0.0].
. Alternatively the rotation can be defined as a quternion.
"placementRelTo": ID of the asset with respect to which the placement (position and
rotation) is defined in relative terms. This means that a rototranslation must be applied
with respect to the placement of the asset identified by the value of placementRelTo.
This relation happens between nodes directly connected in a scene graph. For instance,
the placement of a pallet can be defined as relative to the placement of a conveyor.
"parentObject": ID of the asset that is decomposed (it may be empty or missing) when
an aggregated asset is represented. If a parentObject is defined, then placementRelTo
is defined as equal to parentObject. However, if a placementRelTo value is defined, then
it is not necessarily also the parentObject. For instance, machine components
decompose a workstation, whereas a pallet doesn't decompose a conveyor.

In addition, the following optional properties can be used to further characterize the factory
model in terms of relations and properties:

"connectedTo": array of assets ID that are connected downstream to the asset. The list
may be empty or missing [optional]
“assignmentTo": array of assignments to other assets. The list may be empty or
missing [optional]
“successors": array of successors of a task [optional]
“taskTime": execution time of a task [optional]
“bufferCap": buffer capacity [optional]
“TTF": time to failure (for devices like machines) in terms of probability distribution and
value [optional]
“TTR": time to repair (for devices like machines) in terms of probability distribution and
value [optional]
“duration": duration of a production plan [optional]
“quantity": quantity to be produced in a production plan [optional]

Examples

https://en.wikipedia.org/wiki/Scene_graph

Examples of a scene with assets instantiated in a JSON file are available together with the
corresponding spreadsheets for simple cases, an assembled product, and a workstation.
These JSON files can be used to visualize a 3D scene in VEB.js.

Assets in Ontology

Assets can be defined by instantiating the Factory Data Model as an ontology Abox.

The VLF tool OntoGui can support the instantiation in the following ways:

direct instantiation using Individual Manager module
instantiation of production systems using System Design module
import and parsing of JSON files (assets and animations) using Utilities module

https://en.wikipedia.org/wiki/Abox

3D Models of Assets

Assets composing a model of a factory also need to be modeled in terms of their 3D
representation. To go in this direction, 3D models must be available. They can be obtained
according to two main options:

1. Use existing 3D models. 3D models of industrial objects are often available in online
databases (e.g., GrabCAD) or directly provided by OEMs in official catalogs. These
models are usually very detailed, thus an aspect to be considered is being able to end
up with manageable models in terms of dimension and complexity.
Furthermore, 3D models must be available in a neutral format (e.g. .STEP or .IGES), so
that they can be easily imported in general software environments for further
processing.
IMPORTANT: 3D models downloaded from external sources are often constrained by
privacy policies and rights preventing some or all their possible uses. This can prevent
the possibility to publish this material on this website, even if not commercial use is
foreseen. Please, before proceeding, check information about licenses and favor open
licensing schemes.

2. Generate 3D models. A second option is to generate 3D geometries using CAD
modeling tools (e.g. Solidworks, Inventor). Although more difficult and time-consuming,
consider this option to avoid possible issues related to licensing and rights.

Scaling and orientation

3D models in the scene have to be properly scaled. The hypothesis, unless differently
specified, is that all the measures are expressed in millimeters (mm).

Furthermore, the orientation of each single component must be coherent with the other
objects in the scene. In many CAD environments, it is possible to specify the convention
used for the orientation of the z-axis (z-up option).

Grouping and referencing

https://www.grabcad.com/
https://en.wikipedia.org/wiki/Creative_Commons_license
https://www.solidworks.com/
https://www.autodesk.com/products/inventor

Standard positioning of the origin for a 3D model.

Assets in a factory are often complex objects consisting of many components assembled
together (e.g., a workstation). It is important to build 3D models in order to be easily and
clearly composed to form complex assets.

It's important to have a univocal reference point for each asset in the scene. Namely, this
point is the origin of the corresponding 3D model. Origins may often have unusual
positions, especially when 3D models have been downloaded from online databases. To
make the use and re-use of 3D models in the scene coherent, a reasonable solution is
setting the origin in the central point of the bottom face of the bounding box of the
component.

The positions of the origins can be used to define a complex asset by specifying the
relative position of its components according to the following steps:

1. Each complex asset will have a parent empty object to which its static components will
be referenced and positioned.

2. Subcomponents have to be grouped matching the hierarchy of the assembly, i.e.,
assets forming a sub-assembly must be grouped together.

3. Parenthood relationships between the 3D models have to be defined specifying the
associate relative positioning. CAD environments use this approach to manage
multipart assemblies and dependencies.

Setting up the origin

This operation can be accomplished in CAD software such as Solidworks, or downstream
when editing the exported GLTF/OBJ in Blender.

1. Generate the bounding box of the 3D model.
2. Make the central point of its bottom face explicit.
3. Move the origin to make it coincident with the point.

Formalize information of assets using 3D models

The described procedure and conventions are used to derive information on 3D models to
support the instantiation of assets by specifying their representation. It must be stressed
that not all components in an aggregated object must be necessarily mapped to assets
instantiated in the digital model (spreadsheet, JSON or ontology). Indeed, this mapping
should be limited to components that are associated with needs in the following (non-
exhaustive) list:

the placement (either position or rotation) is customized with respect to the default
values defined in the 3D model file (e.g. GLTF file)
a description or any other property (type, model, connection, assignment) must be
defined, as documented for spreadsheets and JSON files.
the component must animated independently of its parent. Static components typically
are not associated with this need.

Please note that if a component is explicitly defined as an instantiated asset, then also its
parent must be explicitly defined for the sake of consistency. In addition, a unique reference
to the component inside the 3D model must be provided (e.g. adding '#componentID' to the
file name, cf. "file" property in spreadsheet and JSON file). This means that also the ID of
components in the 3D model must be uniquely identifiable.

Examples are provided in the use case section for an assembled product and a workstation.

3D Models for Virtual Reality

3D models, defined according to what described in the section 3D Models of Assets, are not
ready to be used in a VR environment. In fact, specifications related to materials and the
behavior of light for rendering are required.

Several file formats exist to support VR. The recommended option is GLTF, an open
standard developed and maintained by the Khronos Group. It supports many features, i.e.,
3D model geometry, appearance, scene graph hierarchy, and animation. Many CAD
environments are capable of directly export models in the GLTF format.

By default, the unit of measure in the GLTF standard is the meter.

In order to be ready for the use in a VR environment, 3D models of assets must be further
elaborated to define materials and properties for the rendering. Depending on the expected
outcome and the level of realism to achieve, two options are possible:

1. GLTF + standard materials for basic 3D representation.
2. GLTF + PBS textures for high realism.

GLTF + Standard Materials

Basic materials can be applied with regular rendering software such as KeyShot and
Solidworks Visualize and later exported to GLTF.

GLTF + Standard Materials using SolidWorks Visualize

SolidWorks Visualize is a software supporting the definition of VR-ready models. When
importing a Solidworks Assembly file (SLDASM) to Solidworks Visualize, a dialog pops up
to select the desired grouping method to instantiate the hierarchy of the sub-components.
This hierarchy must match the specifications described in the section related to 3D models
of assets, while providing the user the capability of applying different materials to the
different sub-components.

https://app.gitbook.com/@virtualfactory/s/virtual-learning-factory-toolkit/~/drafts/-MWZ-aKf4f5c2ykdnr1P/knowldege-base/instantiation-workflow/3d-models
https://en.wikipedia.org/wiki/List_of_file_formats#3D_graphics
https://en.wikipedia.org/wiki/GlTF
https://en.wikipedia.org/wiki/Khronos_Group
https://en.wikipedia.org/wiki/3D_model
https://en.wikipedia.org/wiki/Scene_graph
https://www.keyshot.com/
https://www.solidworks.com/
https://app.gitbook.com/@virtualfactory/s/virtual-learning-factory-toolkit/~/drafts/-MWZ3fVob4bgz_bgDcWY/knowldege-base/instantiation-workflow/3d-models

Import settings in SolidWorks Visualize

For this purpose, the most efficient import setting option is by “Group/Aspect”.

Thus, drag and drop commands in the software environment can be used to assign
materials to the components in the 3D viewer/hierarchy tree. Further information related to
how assign materials can be found in the official Solidworks Visualize Manual.

It is recommendable, if possible, to use basic materials (e.g. opaque plastic materials),
since more complex appearances (paint materials, translucent, etc...) may cause unwanted
artifacts when the model is exported to the GLTF format.

Finally, the user can export the resulting models in either the GLTF or GLB formats.

http://help.solidworks.com/2019/English/Visualize/c_welcome_to_solidworks_visualize.htm?id=8d46d18b274b48a29167759289c7264d#Pg0

GLTF + PBR Textures

Physically based rendering is a technique enabling an increased level of detail by adopting
high resolution textures applied to the GLTF models.

GLTF + PBR Textures using Blender

Blender is a free and open-source 3D computer graphics software tool set.

Differently from other rendering tools, Blender does not natively include materials to be
applied. Thus, materials have to be collected exploiting online sources such as CC0
Textures, providing an extensive catalog of realistic looking materials that can be freely
downloaded under a Creative Commons license. Each material can be downloaded either in
JPG (lighter) or PNG format, with different texture resolution (from 1K to 8K). These
settings will have a huge impact on the overall size of the final GLTF model, so it is
important to make a trade-off between quality and size of the models.
As a general rule of thumb, opaque materials with overall regular textures like metals,
paints, and rubber can be downloaded with minimum resolution without showing clearly
visible defects once applied to the model: the JPG/1K setting is valid in most cases.
Complex materials ready for the PBR method are composed of a multilayer array of
different textures (namely images) associated to different visual properties that will be
eventually embedded in the model: Color, Displacement, Metalness, Normal, Roughness.

The steps to obtain realistic VR models are the following:

1. The setup of the material is performed through the Shader Editor interface, where each
level of the texture is assigned to their specific nodes. It may be necessary to fine
adjust some parameters if textures appear to be off scale.

https://en.wikipedia.org/wiki/Physically_based_rendering
https://en.wikipedia.org/wiki/Blender_(software)
https://cc0textures.com/

Blender's interface for shader editor.

The user can decide to export the resulting models in the GLTF, GLB, or GLTF with separate
directories for texture resources. By right-clicking the root node of the model and choosing
“Select Hierarchy” all the subcomponents downstream will be selected. The "Compression"
option might be needed to reduce the size of the resulting models, though it can also create
some unwanted result, so it's recommendable to check the exported models afterwards.

More details can be found in the use case 3D Modelling of a Workstation for Virtual Reality.

Further resources

Further information can be found in dedicated online resources:

Khronos Art Pipeline for glTF

THE PBR GUIDE

Blender 2.8 PBR Texturing for Beginners

https://virtualfactory.gitbook.io/virtual-learning-factory-toolkit/use-cases/3d-modelling/3d-modelling-of-a-workstation-for-virtual-reality
https://www.khronos.org/blog/art-pipeline-for-gltf
https://academy.substance3d.com/courses/the-pbr-guide-part-2
https://www.youtube.com/watch?v=XI-pZshRp8g

Animations

The animation of assets in a factory model can be defined according to the JSON schema
described in this section. JSON (JavaScript Object Notation) is a lightweight text-based
data-interchange format that is easy to read/parse and write/generate both for humans
and machines. A .json file can be opened with any basic or advanced text editor (e.g.
NotePad++, Visual Studio Code).

Schema

 The schema is composed of three root properties:

“context”: set of properties of initial setup for the whole animation
"nodes": an array defining what happens during the animation
"bookmarks": an array defining bookmarks

The “context” is characterized by the following set of properties:

"UnitOfMeasureScale": (optional) unit of measure scale (e.g. 0.01 stands for
centimeter, whereas 1 stands for meter). If not defined, then the unit of measure of the
associated scene is adopted.
"assetTrail": value set to true if trails (red lines) must be shown to track the movements
of moving assets, false otherwise to hide all trails.

Each item in the “nodes” array contains the following properties (all required):

"id": unique identifier of the asset that is characterized in terms of animation [required]
"actions": array of actions that are relevant for the animation

Each item in the “actions” array contains the following properties (all required?):

"trigger": specifying when the action takes place with properties “type” and “data”
"event": specifying what action takes place with properties “type” and “data”

Possible values for “type” of “trigger”:

https://www.json.org/json-en.html
https://notepad-plus-plus.org/downloads/
https://code.visualstudio.com/

"timestamp": the value in “data” is interpreted as time in milliseconds after the start of
animation

Possible values for “type” of “event”:

"animation": animation of the asset starts. The value of “data” property is interpreted
as the path of the file (.bin or .txt) defining the animation sequence. The positions and
rotations are defined in absolute terms, but if the additional property “placementRelTo”
is defined then it must be intended in relative terms.
"animationAdditive": animation of the asset starts. The value of “data” property is
interpreted as the path of the file (.bin or .txt) defining the animation sequence. The
animation is intended as additive (incremental) with respect to the current placement
(position, rotation) of the asset.
 “show”: the asset is shown in the scene. The place where the asset appears is defined
with additional properties (as for the scene definition): "position" (default value
[0.0,0.0,0.0]), “scale" (default value [1.0,1.0,1.0]), "rotation" (default value [0.0,0.0,0.0]
Euler angles YXZ in radians), "placementRelTo". For instance, if only "placementRelTo"
is defined, then position, scale and rotation have default values.
“attach”: the asset keeps its absolute position, rotation and scale, but its location in the
scene graph is updated according to the value of property "placementRelTo". If
"placementRelTo" is empty or not defined, then the asset is attached to the root node in
the scene graph.
“hide”: the asset is hidden from the scene
“state”: the asset changes its state in terms of 3D representation and description. The
state is specified by the following properties, all optional:

“data” property is a string with the file path of the 3D representation file (e.g. .obj).
The new 3D representation completely replace the (possibly) existing mesh while
inheriting its attributes (e.g. position, rotation, scaling).
"descr" is a string with the description of the current state. This description is
incremental and does not replace the static description of the asset.

“link”: link to a (text) file that is specified by the following properties:
“data” is a string with the local file path
"descr" is a string with the description of the content that is found at the link
“URL” is the address where the file can be downloaded from

“trail”: setting the visualization of the trail (red line) to track movements of the specific
asset with the following property.

“value” is a boolean set to true if the trail generation is started, false if the trail
generation is stopped.

Animation sequence

The animation (“animation” or “animationAdditive”) sequence is defined in a .txt file as a
list of numerical values to be interpreted as follows:

The first line defines the total number of frames (N) in the file.
The second line defines the FPS (frame per second).
Lines from 3 till N+2 define the position in the 3D space for each frame.
Lines from N+3 till 2*N+2 define the rotation (as Euler angles YXZ in radians or
alternatively as quaternion for "animation" and axis-angle for "animationAdditive") in
the 3D space for each frame.

Examples

Examples of animation instantiated in a JSON file are available together with the
corresponding JSON file instantiating the scene and assets. Animations can be played in
VEB.js.

Data Repositories

Repositories are needed to store Factory Models in terms of assets, 3D files, animations.

Data repositories can be either installed locally or made available remotely via
communication protocols (e.g. HTTP, FTP).

Local Repository

The instantiated factory models can be serialized as text/binary files and saved on a local
file system that is directly accessible by digital tools:

Assets can be saved in .xlsx (Spreadsheet), .json, or .owl/.rdf (ontology) files
3D models can be saved in various formats like .OBJ and .GLTF/.GLB
Animations can be saved in .json and .txt files

Localhost

If a digital tool needs http(s) communications to retrieve factory models, then a localhost
server can be launched, e.g. using JavaScript or Python scripts.

https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://www.khronos.org/gltf/
https://en.wikipedia.org/wiki/Localhost
https://www.npmjs.com/package/http-server
https://pythonbasics.org/webserver/

Remote Repository

Remote repositories are typically installed on servers. In most cases, a remote repository
can be made operational also locally by running a localhost.

RDF store

Commercial and non-commercial RDF stores, also named Triplestores, are available, e.g.
Stardog, Apache Jena Fuseki, Virtuoso.

RDF stores are typically structured into Datasets/Databases.

Apache Jena Fuseki

Apache Jena Fuseki is a SPARQL server that can run as an operating system service, as a
Java web application (WAR file), or as a standalone server.

After downloading and unzipping Apache Jena Fuseki .zip file, the simplest way to run
Fuseki as a Standalone Server by executing fuseki-server from the command prompt

(or launching fuseki-server.bat in Windows).

The default location of a Fuseki server installation is http://localhost:3030

A demo Fuseki SPARQL Endpoint with a Dataset named "VLFT" is available at
http://mi-eva-d001.stiima.cnr.it/fuseki

Online repository for binary/text files

GitHub repositories can be exploited to store binary files (e.g. 3D models, animation
sequences) and make them available via secure HTTP connections.

1. After your GitHub registration, you can create a new repository as "Public".

https://jena.apache.org/documentation/fuseki2/
https://jena.apache.org/download/
http://localhost:3030/
http://mi-eva-d001.stiima.cnr.it/fuseki/VLFT
https://github.com/
https://github.com/join
https://docs.github.com/en/github/getting-started-with-github/create-a-repo

2. Upload binary files to the repository ("Add file", "Upload files") and "Commit changes",
creating the repository directories that you prefer.

A couple of examples:

repository https://github.com/KhronosGroup/glTF-Sample-Models with file
2.0/WaterBottle/glTF-Binary/WaterBottle.glb
repository https://github.com/wterkaj/RepoExample with file example_1.json

Option 1

Each file in the repository can be directly retrieved with a URL structured as
https://raw.githubusercontent.com/$User/$Repository/$Branch/$LocalFilePath

where $User is the registered GitHub user, $Repository is the chosen name of the

repository, $Branch is the selected versioning branch (e.g. "main"), and $LocalFilePath

is the local of the file in the repository. The example files are available at these URLs:

https://raw.githubusercontent.com/KhronosGroup/glTF-Sample-
Models/master/2.0/WaterBottle/glTF-Binary/WaterBottle.glb

https://raw.githubusercontent.com/wterkaj/RepoExample/main/example_1/example_
1.json

Option 2

For a given GitHub repository it is possible to activate the GitHub Pages option ("Project
site") that turns the repository into a website. The first example file is available at this URL:

https://wterkaj.github.io/RepoExample/example_1/example_1.json

https://github.com/KhronosGroup/glTF-Sample-Models
https://github.com/KhronosGroup/glTF-Sample-Models/blob/master/2.0/WaterBottle/glTF-Binary/WaterBottle.glb
https://github.com/wterkaj/RepoExample
https://github.com/wterkaj/RepoExample/blob/main/example_1/example_1.json
https://raw.githubusercontent.com/KhronosGroup/glTF-Sample-Models/master/2.0/WaterBottle/glTF-Binary/WaterBottle.glb
https://raw.githubusercontent.com/wterkaj/RepoExample/main/example_1/example_1.json
https://pages.github.com/
https://wterkaj.github.io/RepoExample/example_1/example_1.json

3. VLF Tools and Libraries

The Virtual Learning Factory (VLF) Tools are digital tools that can be integrated thanks to
the interoperability provided by interacting with the common factory data model. In
principle, any digital tool can be included in the VLFT if the following requirements are met:

The digital tool offers a way to access and modify (if needed) its internal data
structures, by means of exchange files or through an application programming
interface (API).
A customized software component (a.k.a. plugin, connector) is developed to
import/export data from/to the VLF Knowledge taking in due consideration both the
reference factory data model and the specific data model adopted by the digital tool.

The development of the connector can be eased by the use of programming libraries and
pre-defined SPARQL queries that are part of the VLFT.

The integrated digital tools support various phases along the factory lifecycle, such as
production system design, layout design, system performance evaluation and visualization
of production system performance. These phases can be sequential or more frequently
iterated in loops. VLFT include the following groups of VLF Tools:

Graphical User Interfaces (GUIs) to access the knowledge base, explore and generate
new factory models. GUIs and queries can support the definition and retrieval of
production system configurations (i.e. part types, process plans, operations,
capabilities of the production resources like machine tools, transporters, storage
systems) and also planning and monitoring of manufacturing execution (scheduled
production volumes, available resources, key performance indicators (KPI) like
throughput, average inventory, average lead time). The prototype tool OntoGui
developed by CNR-STIIMA can be used for this purpose.
Performance evaluation via Discrete Event Simulation. Commercial off the shelf tools
and academic tools (e.g. Java Modeling Tools) can be integrated in VLFT by
developing plugins that support the automatic generation of simulation models and

Table of Contents

the automatic retrieval and storage of results to be exploited by other users and
applications.
3D visualization and interaction with production systems and production resources by
means of Virtual and Augmented Reality. These tools support the design,
reconfiguration, training and maintenance of production systems and resources. Digital
tools based on the libraries babylon.js and ApertusVR are currently available in VLFT.
Human Modeling in manufacturing. Tools and methodologies supporting safety and
well-being, ergonomics (e.g. RULA, OCRA), human-machine process design and
monitoring (e.g. MTM, MOST).

3.1 OntoGui
OntoGui is a software tool providing a graphical user interface to support:

The fast evaluation of a T-box under development by concurrently instantiating a
corresponding A-box, thus implementing a kind of test-driven development approach.
The generation of RDF data sets to be used as input for other ontology-based
applications, without needing customized graphical user interfaces or data converters.

The main window of OntoGui is a Control Panel that can manage (networks of) ontologies
The Control Panel gives also access to ontology tools like OWL Individual Manager.

OntoGui is developed as a desktop application in C++ making use of wxWidgets Cross-
Platform GUI Library [2] for the creation of graphical elements, and the RdfCpp library.
RdfCpp is a C++ library, based on Boost Library [3] and Redland RDF [4] (enabling the
parsing and generation of RDF triples), that provides classes and functions to manage a
network of RDF graphs, parse and generate OWL individuals, parse OWL axioms of a T-box
(i.e., equivalent classes; subclasses; restrictions of any degree involving universal quantifier,
existential quantifier, or cardinality constraints; domain and range of properties). Moreover,
RdfCpp supports the connection with different RDF store solutions: (a) file-based; (b)
Stardog triplestore [5].

OntoGui is currently available as a Windows application. The academic version of OntoGui
can be freely downloaded and used for non-commercial applications:

OntoGui application OntoGui.zip - 10MB

The Root folder ($ROOT) is where the OntoGui executable (i.e. OntoGui32.exe or
OntoGui32_academic.exe) is located. Several .dll are included in the root folder and must
be available to run OntoGui. Depending on the configuration of the Windows operating
system, it may be necessary to install the MVC++2010 Redistributable Package (x86 or
x64).

The XML file «$ROOT/ConnConfig.xml» can be used to set configuration options. The
folder «$ROOT/doc» contains documents. The folder «$ROOT/log» contains log file that

3. VLF Tools and Libraries

http://www.terkaj.com/tools.html#OntoGui
https://firebasestorage.googleapis.com/v0/b/gitbook-28427.appspot.com/o/assets%2F-Lh1dC9-F-cM6usakky7%2F-MVRMFhGF0gUC9qFMEnY%2F-MVRMOzqLRXpy-J5Bpu2%2FOntoGui.zip?alt=media&token=c6bb47b6-cec5-427c-bde2-659fde86e6d7
https://www.microsoft.com/en-ie/download/details.aspx?id=5555
https://www.microsoft.com/en-us/download/details.aspx?id=13523

may be generated during the execution of OntoGui. The folder «$ROOT/repository» is the
default local repository.

References

1. Terkaj W (2017) OntoGui: a Graphical User Interface for Rapid Instantiation of OWL
Ontologies. Proceedings of the Workshop Data Meets Applied Ontologies, Joint
Ontology Workshops 2017, CEUR Workshop Proceedings, vol. 2050

2. https://www.wxwidgets.org/
3. http://www.boost.org/
4. http://librdf.org/
5. http://www.stardog.com/

Applications

Colledani M, Pedrielli G, Terkaj W, Urgo M (2013) Integrated Virtual Platform for
Manufacturing Systems Design. Procedia CIRP 7:425-430.
doi:10.1016/j.procir.2013.06.010
Terkaj W, Sojic A (2015) Ontology-based Representation of IFC EXPRESS rules: an
enhancement of the ifcOWL ontology. Automation in Construction, 57:188-201. ISSN:
0007-8506. doi:10.1016/j.autcon.2015.04.010
Sojic A, Terkaj W, Contini G, Sacco M (2016) Modularising ontology and designing
inference patterns to personalise health condition assessment: the case of obesity.
Journal of Biomedical Semantics, 7:12. ISSN: 2041-1480. doi:10.1186/s13326-016-
0049-1
Terkaj W, Gaboardi P, Trevisan C, Tolio T, Urgo M (2019) A digital factory platform for
the design of roll shop plants. CIRP Journal of Manufacturing Science and Technology,
26:88-93. ISSN: 1755-5817. doi:10.1016/j.cirpj.2019.04.007

mailto:walter.terkaj@stiima.cnr.it
https://www.wxwidgets.org/
http://www.boost.org/
http://librdf.org/
http://www.stardog.com/
https://doi.org/10.1016/j.cirpj.2019.04.007

How to start

Registration form

Registration

Please read the license in OntoGui_License.txt. In case of commercial application you can
contact the author at wterkaj@gmail.com or walter.terkaj@stiima.cnr.it

When launching the executable the first time, a registration window appears:

1. Link to the web page for the OntoGui registration. This registration must be repeated
for each workstation/laptop where OntoGui is used.

2. Enter the Activation Key generated after the registration
3. Check the Activation Key. If successful, the registration and activation will not be

repeated as long as the software tool is used on the same computer.

mailto:wterkaj@gmail.com
mailto:walter.terkaj@stiima.cnr.it

OntoGui Modules

OntoGui provides access to the following main modules:

Control Panel
Individual Manager
System Design
Utilities

In addition, examples showing how OntoGui can be exploited are described in the Use
Cases section for the Flow Shop, Job Shop, and Hybrid Flow Shop systems architectures.

Control Panel

OntoGui Control Panel

The main window of OntoGui is a Control Panel that can manage (networks of) ontologies
in a file-based repository or other more scalable RDF stores by selecting different repo tabs:

LOCAL REPO, i.e. local file system
STARDOG REPO, i.e. Stardog Knowledge Graph (https://www.stardog.com/)

The Control Panel allows to load an existing ontology module and its dependencies, create
a new A-box module, define new import relations between modules, and save the modules
in any of the available repository.

1. Selection of available repositories.
2. Control Panel: it provides also access to software tools and plugins.

LOCAL REPO

https://www.stardog.com/

Repo path: Location of the local repository in the file system.
Update List button to update the list of the ontology modules available in the selected
repository.
Set Repo Path button to set the location of the local repository within the file system.
Ontology Modules combo box lists the ontology modules available in the selected
repository. This field can be modified to define the name a new module.
Load button to load the ontology module selected in the list.
Add Import button: the ontology module selected in the list is imported by the loaded
ontology module.
Remove Import button: the ontology module selected in the list is removed from the
import list of the loaded ontology module.
Create New button: a new ontology module is created using the name specified in the
combo box. The new module imports the default Tbox module. If 'InSubfolder' is
flagged then a new module is placed in a dedicated subfolder within the repository
folder.
Delete button to delete the selected ontology module.
Default Tbox Module button to select the ontology module that is imported by default
when a new module is created.
Save Loaded Modules on Local button to save the loaded ontology module in the
current repository.If 'only root' is flagged, only the root ontology module is saved on the
repository. In 'Serialization' the serialization format can be selected.

STARDOG REPO

Server: address of the Stardog server (port is included)
Database: selected database in the Stardog server
User: user credentials to access the Stardog server
Psw: password credentials to access the Stardog server
Connect button to connect to the repository
Update List button to update the list of the ontology modules available in the selected
repository.
Ontology Modules combo box lists the ontology modules available in the selected
repository. This field can be modified to define the name a new module.
Load button to load the ontology module selected in the list.
Add Import button: the ontology module selected in the list is imported by the loaded
ontology module.
Remove Import button: the ontology module selected in the list is removed from the
import list of the loaded ontology module.
Create New button: a new ontology module is created using the name specified in the
combo box. The new module imports the default Tbox module.
Delete button to delete the selected ontology module.

Save Loaded Modules on Sdog button on Local to save the loaded ontology module in
the current repository. If 'only root' is flagged, only the root ontology module is saved on
the repository.

Loaded Ontology Modules

The central part of the Control Panel presents information about the loaded ontology
modules, whatever is the source repository.

Root Module shows the name of the root ontology module that is currently loaded.
This field can be modified to change the name by pressing the Rename button.
Descriiption of the root ontology module that is currently loaded.
Clear button to clear the loaded ontology modules from memory.
Repo shows which is the repository that is currently accessed.
Imported Ontology Modules lists the ontology modules that are directly or indirectly
imported by the root ontology module.
Default Tbox Module defines which ontology module is imported by default when a
new ontology module is created.

OWL Individual Manager

OWL Individual Manager is a general purpose tool for the management of OWL individuals.
For information go to the dedicated page.

Individual Manager

OWL Individual Manager is a general purpose tool for the management of OWL individuals.
The main window of the tool is dynamically reconfigured every time an OWL class
belonging to the available T-box is selected (in the top left corner). After loading an
ontology module in the control panel and selecting an OWL class in OWL Individual
Manager, the characterization of the OWL classes provided by the RdfCpp library enables
the following functionalities:

Generation and listing of individuals belonging to the selected class.
Exploring one individual or generate a new individual belonging to the selected class.
Listing the properties that can have the selected individual as a subject, based on the T-
box axioms. For each property it is possible to visualize the target value that is found at
the end of the property chain.
Exploring and setting the target value of a property for the selected individual.
Checking the integrity of the selected individual by interpreting the OWL axioms as
Integrity Constraints according to the Closed World Assumption (CWA).

Launch OWL Individual Manager:

Launch OWL Individual Manager

OWL Individual Manager overview

OWL Individual Manager interface - 1

Here's a description of the features and usage of the Individual Manager:

1. List of Selectable OWL classes. The individuals belonging to the selected class (and
subclasses if the corresponding box is checked) are searched.

2. If working with a local repository, it is necessary to explicitly save if the modifications
must be mantained. If working with Stardog repository any modification is
immediately saved in the repository.

3. Create an individual of the selected OWL class with the specified Local URI in the
selected ontology module.

4. List of selectable Individuals belonging to the selected OWL class.
5. Local URI of the selected Individual. This value can be changed.
�. Informations about the selected individual.
7. Delete the selected Individual from the ontology module.

OWL Individual Manager interface - 2

1. Listing the properties that can have the selected individual as a subject, based on the T-
box axioms.

2. Add a triple to the ontology module having the selected individual as subject, the
currently explored property as predicate and a new or existing individual as target
belonging to the selected target class.

3. Delete the relation between the selected individual and the target individual via the
currently explored property.

4. Delete the target individual from the ontology module (therefore also the relation with
the selected individual is deleted).

OWL Individual Manager interface - 3

1. List of targets of the selected individual and property.
2. Selected target individual. It can be double-clicked to be explored as new main selected

individual.
3. Details of the selected target individual. It is possible to set values if the target

individual can be the subject of a relation involving a datatype property.

System Design

System Design graphical user interface

System Design tool is an OntoGui module that supports the design of a production system
and in particular the definition of part types, process plans, and the elements of the system
like machines and buffers. The process plans can be decomposed into process step
characterized by precedence relations. Moreover, the process steps can be assigned to the
elements of the production systems.

The graphical user interface of System Design can be divided into areas associated with
different phases of the configuration of a production system, as shown in the next figure.

Functionalities of System Design

PART TYPES. Part types can be created, selected or deleted.
PROCESS PLANS. Process plans to produce the currently selected part type can be
created, selected or deleted.
PROCESS STEPS. The selected process plan can be decomposed into process steps
characterized by processing times.

SUCCESORS. It is possible to specify which is the successor of the selected
process steps, thus defining precedence relations.
ASSIGNMENTS. The selected process step can be assigned to resources/resource
types that are needed to complete/execute the process step.

SYSTEMS. Production systems can be created, selected or deleted.
SYSTEM ELEMENTS. Production system are defined as an aggregation of
elements like machines and buffers. It is also possible to specify the connections
between machine tools and buffers. Moreover, machine tools can be characterized
by their failure modes and buffers in terms of capacity.

Utilities

Utilities tool provides functionalities to generate reports and exchange files based on the
contents of the currently loaded ontology modules:

Generate Log, generating a log about the individuals and related properties.
Integrity Check, checking the integrity of all individuals by interpreting the OWL axioms
as Integrity Constraints according to the Closed World Assumption (CWA).
Report:

T-box report in terms of classes, object properties, datatype properties.
Metrics of ontology modules.

Clean Ontology Modules, cleaning the ontology modules by deleting dangling
individuals
Export 3D scene, generating exchange .json file representing a 3D scene for an
application based on

Babylon.js
ApertusVR

Export a .json file representing the contents of the loaded ontology module.
Export 3D Animation, generating exchange .json file representing a 3D animation for an
application based on:

Babylon.js
ApertusVR

Import JSON, importing the contents of a .json file to loaded ontology module.

Personalization

Configuration file «ConnConfig.xml»

The configuration file ConnConfig.xml can be modified to set the following properties:

LocalRepo to characterize the local repository in the file system with attributes:
path, i.e. the path of the local repository defined as relative to the root folder of
OntoGui
serFormat, serialization format that can be rdfxml for RDF/XML or ntriples for N-
triples
inSubfolder, value set to «true» if the A-box that are create must be placed in a
dedicated subfolder of the local repository, «false» otherwise.
TboxFolder, subfolder of the local repository dedicated to store T-box ontology
modules

StardogRepo to characterize the Stardog repository with attributes:
server, i.e. address of the Stardog server
database, i.e. selected database provided by the Stardog server
user, i.e. user credentials to access the Stardog server
psw, i.e. password credentials to access the Stardog server

RootDataModel
path, i.e. default T-box module that is imported by the A-box modules that are
created

LocalRepoBinary
path, i.e. path defined as relative to the root folder of OntoGui that is dedicated to
store binary files

SceneThreeD: settings to generate exchange file representing a 3D scene
ModelFiles, format of 3D models
Quaternion, true if quaternions are used to define rotations, false if Euler Angles
are used
Zup, true if the Zup convention is adopted, false if Yup is adopted
LengthUnitOfMeas, unit of measure used for positions in space ("0.01" stands for
centimeters)

ImportExport: setting for import/export .json files
InputFile, input file
OutputDir, output directory

ApertusVR: settings for export .json file representing a 3D scene for an ApertusVR-
based application

ModelFiles, formats of 3D models that are accepted
OutputFile, output file
LengthUnitOfMeas, unit of measure used for positions in space ("0.01" stands for
centimeters)
AbsolutePlace, set to true if absolute placements are used, false if relative
placements are used
BlankNode, set to true if objects without a mesh can be added to the 3D scene
OutputDir, output directory
AbsPath3Dmodel, set to true if the path of 3D models is defined in absolute terms
AddModelTypes, set to true if the model of objects is included in the asset list
ArtifactHierarchy, set to true if the hierachy of artifact objects is represented in the
3D scene

BabylonJS: settings for export .json file representing a 3D scene for a babylon.js-based
application

ModelFiles, formats of 3D models that are accepted
OutputFile, output file
LengthUnitOfMeas, unit of measure used for positions in space ("0.01" stands for
centimeters)
OutputDir="BabylonJs/Scenes/"
AbsolutePlace, set to true if absolute placements are used, false if relative
placements are used
BlankNode, set to true if objects without a mesh can be added to the 3D scene
AddModelTypes, set to true if the model of objects is included in the asset list
ArtifactHierarchy, set to true if the hierachy of artifact objects is represented in the
3D scene

OntoGuiOptions:
safeDelete, true if confirmation is asked before deleting an ontology module

OntoGuiSysDesignOptions: settings to customize the interface of System Design
module

AssignmentClasses, list of resource types that can be assigned to process steps
AssignmentLabels, list of labels for the resource types that can be assigned
ElementClasses, list of element types that can be included in a production system
ElementLabels, list of labels for the element types that can be included in a
production system

Animation: settings for the generation of 3D animations

InputLogFile, input log file to generate the animation.
InputClipFile, input .json file defining animation clips.
ReplicatesN, number of replicates of the animation sequence.
ReplicatesLag, lag between replicates.

3.2 jsimIO
jsimIO is a platform-independent Python library, compatible with Python > 3.x, which can be
used to generate JSIM simulation models of a manufacturing system and run the
simulation from a Python environment using the Java Modelling Tools (JMT) simulation
engine.

GitHub repository: https://github.com/frabera/jsimIO

Features

jsimIO is able to generate simulation models for manufacturing systems with the following
characterstics:

Multiple part-types
Open and closed part-type classes
Assembly operations (sub-assembly part types can be joined to a assembled part
type)
Multiple drop and scheduling strategies
Multiple statistical distribution for modelling service times and arrival times.

For a detailed description, refer to the jsimIO Manual in the dedicated GitHub
repository.

The available nodes to model the system are:

Source
Sink
Station composed by:

Queue of finite or infinite size
Server with single or finite number of concurrent jobs

Infinite Server (Delay)

3. VLF Tools and Libraries

https://github.com/frabera/jsimIO
https://github.com/frabera/jsimIO/blob/master/MANUAL.md

Fork
Join
Logger

Measures

Many different measures can be selected as simulations result, such as the throughput or
the average number of customers, both referred to a single node or to the whole system. For
further information please refer to the JMT manual.

Simulation Log

Using the Logger station, it is possible to save a log of each event relate to part flowing by
the station.

jsimIO can automatically add a preceding Logger station to each node of the system. In
this way, at the end of the simulation a log file is saved as a .csv file containing all the
events and part flows in the system for further analysis.

Installation and Requirements

For installation instructions and requirements, visit the dedicated page:

How to start /tools/jsimio/how-to-start

How to start

Hardware, OS, browser compatibility

jsimIO is a platform-independent Python library, compatible with Python > 3.x.

Java Modelling Tools is platform-independent and requires only the Java Oracle JDK.

jsimIO installation instruction are also reported in the README.md file in the GitHub
repository:

https://github.com/frabera/jsimIO/blob/master/README.md

Testing Platforms

The library has been succesfully tested with:

Microsoft Windows XP/VISTA/7/8/10
Mac OS X 10.4.6+
Linux Ubuntu 16.10+

Requirements

JMT - Java Modelling Tools require the installation of Oracle/Sun Java JDK. To download
it, visit https://www.oracle.com/java/technologies/javase-downloads.html. The required
package is called "Oracle JDK".

Select your O.S., accept the Terms and Conditions and download and install the

application.

Download jsimIO

To download jsimIO, download or clone the jsimIO repository:

http://www.java.com/en/download/manual.jsp
https://github.com/frabera/jsimIO/blob/master/README.md
https://www.oracle.com/java/technologies/javase-downloads.html

https://github.com/frabera/jsimIO

Download JMT

The required file to download is the Java .jar executable, not the JMT installer.

Current Stable JMT Version: 1.1.1

JAR Version Download it here

After downloading the executable, rename it to JMT.jar and place it in the jsimIO

subfolder, where JMT.jar_GOES_HERE file is located.

License

See license informations in the License page.

https://github.com/frabera/jsimIO
http://sourceforge.net/projects/jmt/files/jmt/JMT-1.1.1/JMT-singlejar-1.1.1.jar/download
http://jmt.sourceforge.net/License.html

JMT Overview

Introduction

Java Modelling Tools (JMT) is a suite of applications developed by Politecnico di Milano
and Imperial College London and released under GPL license.

The project aims at offering a comprehensive framework for performance evaluation,
system modeling with analytical and simulation techniques, capacity planning and
workload characterization studies.

The suite includes six Java applications:

1. JSIMgraph - Queueing network and Petri net simulator with graphical user interface
2. JSIMwiz - Queueing network and Petri net simulator with wizard-based user interface
3. JMVA - Mean Value Analysis and Approximate solution algorithms for queueing

network models
4. JABA - Asymptotic Analysis and bottlenecks identification of queueing network models
5. JWAT - Workload characterization from log data
�. JMCH - Markov chain simulator

Versions

Download: Latest Release

Manual: Download

References

M.Bertoli, G.Casale, G.Serazzi.
JMT: performance engineering tools for system modeling.
ACM SIGMETRICS Performance Evaluation Review, Volume 36 Issue 4, New York, US,
March 2009, 10-15, ACM press. (Article) (BibTex)

http://jmt.sourceforge.net/
http://jmt.sourceforge.net/Download.html
http://jmt.sourceforge.net/Papers/JMT_users_Manual.pdf
http://jmt.sourceforge.net/Papers/acm09jmt.pdf
http://jmt.sourceforge.net/Papers/acm09jmt.bib

JSim

In the JMT suite a discrete-event simulator for the analysis of queueing network models is
provided. Two user interfaces are available: alphanumerical (JSIMwiz) and graphical
(JSIMgraph).

JSIMgraph is the GUI front-end to JMT simulation engine. It helps the users to perform an
evaluation study in two ways. Firstly, critical statistical decisions, such as transient
detection and removal, variance estimation, and simulation length control, have been
completely automated, thus freeing the users from taking decisions about parameters s/he
may not be familiar with. The simulation is automatically stopped when all performance
indexes can be estimated with the required accuracy. Secondly, a user-friendly graphical
interface allows the user to describe both the network layout and the input parameters.
Furthermore, the graphical interface also provides support for the use of advanced features
(several of them are for networks with very general characteristics, usually referred to as
non-product-form networks) like fork and join of customers, blocking mechanisms, regions
with capacity constraints on population, state-dependent routing strategies, user-defined
general distributions, import and reuse of log data. A module for What-If Analysis, where a
sequence of simulations is run for different values of control parameters, particularly useful
in capacity planning, tuning and optimization studies, is also provided.

The simulation engine performs on-line the statistical analysis of measured performance
indices, plots the collected values, discards the initial transient periods and computes the
confidence intervals. Network topologies implemented and solved using JSIMgraph can be
exported in vector (e.g., eps, pdf) or raster (e.g., jpg, png) image formats.

From: http://jmt.sourceforge.net/Papers/JMT_users_Manual.pdf

Following, the workflow for modelling and simulating a production system in Jsim is
presented.

Sections:

http://jmt.sourceforge.net/Papers/JMT_users_Manual.pdf

Model generation
/tools/jsimio/jmt-overview/jsim/model-
generation

Launch of the simulation
/tools/jsimio/jmt-overview/jsim/launch-
of-the-simulation

Reporting
/tools/jsimio/jmt-
overview/jsim/reporting

Model generation

Nodes insertion

The required steps to generate the JSim model are the following:

Draw the network

To draw the network, use the cursor to choose the node types from the toolbar and insert
them by clicking in the canvas in any area. It is then possible to simply drag the icon to
move the node.

After all the required nodes are included, it is necessary to draw the connection between
them. The drawing connections mode is activate by clicking on the highlighted icon (see
figure). To connect two nodes simply click on the first node and drag it. An arrow will
appear. Move to the following node and release, the two nodes are now connected.

Nodes connection

Customer Classes

After the model draw, it is necessary to define the customer classes that will be in the
system and to define a Reference Station for each one of them.

Bibliography

Manuals & Books

Java Modelling Tools - User manual v1.0.4, 227 pages, 4 September 2019. (Manual)
G.Serazzi Ed. Performance Evaluation Modelling with JMT: learning by examples
Politecnico di Milano - DEI, TR 2008.09, 366 pp., June 2008 (Book)

Tutorials

Video lectures: introduction to queueing theory, JSIMgraph and JMVA.
Video demos: short videos illustrating key features of JSIMgraph and JMVA.
G.Serazzi. Advanced features for Multi-formalism modelling with Java Modelling
Tools. EPEW Keynote, November 2019, Milan, Italy. (Slides - PDF)
G.Casale, G.Serazzi, L.Zhu. Performance Evaluation with Java Modelling Tools: a
Hands-On Introduction. IFIP Performance Conference, November 2017, NYC, US.
(Slides - PPT) (Slides - PDF) (Examples)
G.Casale, G.Serazzi. Quantitative System Evaluation with Java Modelling Tools. 2nd
ACM/SPEC International Conference on Performance Engineering (ICPE), March 2011,
Karlsruhe, Germany. (Slides - PPT) (Slides - PDF)

Papers

M.Bertoli, G.Casale, G.Serazzi. JMT: performance engineering tools for system
modeling. ACM SIGMETRICS Performance Evaluation Review, Volume 36 Issue 4, New
York, US, March 2009, 10-15, ACM press. (Article) (BibTex)
G. Casale, M. Cazzoli, S. Jiang, V. S. Lopes, G. Serazzi, L. Zhu. Generalized
Synchronizations and Capacity Constraints for Java Modelling Tools. ACM/SPEC ICPE
2017, 169-170, ACM press. (Article) (BibTex)
M.Bertoli, G.Casale, G.Serazzi. User-Friendly Approach to Capacity Planning Studies
with Java Modelling Tools. Int.l ICST Conf. on Simulation Tools and Techniques,
SIMUTools 2009, Rome, Italy, 2009, ACM press. (Article) (Slides) (BibTex)

http://jmt.sourceforge.net/Papers/JMT_users_Manual.pdf
http://jmt.sourceforge.net/Papers/Exercisebook080617.pdf
https://www.youtube.com/watch?v=kR_-by3u8JM&list=PL5yYxD_4CokRTQt-cI2y5m3m-p3FhUsSe
https://www.youtube.com/watch?v=HTtQQVrXpx0&list=PL5yYxD_4CokS18VQIAAWhzOySQYnPlV2b
http://jmt.sourceforge.net/Papers/epew19.PDF
http://jmt.sourceforge.net/Papers/17_performance_jmt.pptx
http://jmt.sourceforge.net/Papers/17_performance_jmt.pdf
http://jmt.sourceforge.net/Papers/17_performance_jmt_handson.zip
http://jmt.sourceforge.net/Papers/icpe11_jmt_tutorial.ppt
http://jmt.sourceforge.net/Papers/icpe11_jmt_tutorial.pdf
http://jmt.sourceforge.net/Papers/acm09jmt.pdf
http://jmt.sourceforge.net/Papers/acm09jmt.bib
http://jmt.sourceforge.net/Papers/icpe17.pdf
http://jmt.sourceforge.net/Papers/icpe17.bib
http://jmt.sourceforge.net/Papers/simutools09jmt.pdf
http://jmt.sourceforge.net/Papers/simutools09jmt-slides.pdf
http://jmt.sourceforge.net/Papers/simutools09jmt.bib

M.Bertoli, G.Casale, G.Serazzi. The JMT Simulator for Performance Evaluation of Non-
Product-Form Queueing Networks. SCS Annual Simulation Symposium 2007,
Norfolk,VA, US, 3-10, IEEE Press. (Article) (Slides) (BibTex)
M.Bertoli, G.Casale, G.Serazzi. An Overview of the JMT Queueing Network Simulator.
Politecnico di Milano - DEI, TR 2007.2, 2007. (Article) (BibTex)
M.Bertoli, G.Casale, G.Serazzi. Java Modelling Tools: an Open Source Suite for
Queueing Network Modelling and Workload Analysis. Proceedings of QEST 2006
Conference, Riverside, US, Sep 2006, 119-120, IEEE Press. (Article) (Slides) (BibTex)

Designed by Bertoli Marco

DEIB -Politecnico di Milano - Italy

Department of Computing - UK

Coordinators: G.Casale, G.Serazzi

http://jmt.sourceforge.net/Papers/anss07jmt.pdf
http://jmt.sourceforge.net/Papers/anss07jmt-slides.pdf
http://jmt.sourceforge.net/Papers/anss07jmt.bib
http://jmt.sourceforge.net/Papers/tech07jmt.pdf
http://jmt.sourceforge.net/Papers/tech07jmt.bib
http://jmt.sourceforge.net/Papers/qest06jmt.pdf
http://jmt.sourceforge.net/Papers/qest06jmt-slides.pdf
http://jmt.sourceforge.net/Papers/qest06jmt.bib

3.3 VEB.js
VEB.js (Virtual Environment based on Babylon.js) is a reconfigurable model-driven virtual
environment application based on Babylon.js, a complete JavaScript framework and
graphics engine for building 3D applications with HTML5 and WebGL (Web Graphics
Library). Babylon.js enables to load and draw 3D objects, manage these 3D objects, create
and manage special effects, play and manage spatialized sounds, create gameplays and
more. Babylon.js library is free to use, thus enabling also didactic use.

Babylon.js was exploited to develop VEB.js as a reconfigurable model-driven virtual
environment application.

Hardware, OS, browser compatibility

VEB.js works on any browser that supports WebGL and no specific configuration of the
hardware is needed. The same can be stated for the Operating System (OS).

Though it has to be noted that depending on the complexity of the scene, problems (e.g.
lag) might arise if using a low potential graphic processing unit (GPU); indeed, even a
smartphone can be used to load basic scenes, but if the complexity of the scene increases
a more powerful GPU will be needed in order to obtain optimal rendering.

How to run VEB.js remotely

It is possible to remotely access the VEB.js application if it is installed on a server. If the

server is active at the address $ServerAddress , then the application can be accessed via

browser at $ServerAddress/vebjs.html?inputscene= .

A demo of VEB.js is available at: http://mi-eva-d001.stiima.cnr.it/vebjs/?inputscene=

Getting started

3. VLF Tools and Libraries

https://www.babylonjs.com/
https://www.khronos.org/webgl/
mailto:walter.terkaj@stiima.cnr.it
http://mi-eva-d001.stiima.cnr.it/vebjs/?inputscene=

empty scene

At startup the browser shows an empty scene that contains the main application
functionalities.

A scene consists of a set of assets (e.g. selected from a catalog of resources) that are
organized in a layout; in addition, lights and cameras (i.e. navigation point of view) are
attached to a scene. After opening the empty scene page, there are two options to load an
already existing scene:

import a scene .json file, clicking on the Import button and browsing your local file
system.
modify the URL writing after "=" the name of the scene to be opened, e.g. http://mi-eva-
d001.stiima.cnr.it/vebjs/?inputscene=example_1. The corresponding .json file must be
available in the Scenes folder of the server where VEB.js is running.

modify the URL writing after "=" the address of scene .json file that is available on a
remote repository, e.g. http://mi-eva-d001.stiima.cnr.it/vebjs/?
inputscene=https://raw.githubusercontent.com/wterkaj/RepoExample/main/example_
1/example_1.json

http://mi-eva-d001.stiima.cnr.it/vebjs/?inputscene=example_1
http://mi-eva-d001.stiima.cnr.it/vebjs/?inputscene=https://raw.githubusercontent.com/wterkaj/RepoExample/main/example_1/example_1.json

Example of a 3D scene

References

Compatibility https://doc.babylonjs.com/

https://doc.babylonjs.com/

Basic functionalities

1. Moving the camera in the scene

It is possible to use the keyboard to navigate the scenes with the following keys.

Key Function

A moves the point of view to the left

D moves the point of view to the right

W moves the point of view forward (zoom)

S moves the point of view backward (de-zoom)

E moves the point of view upward

Q moves the point of view downward

Moreover, it is possible to select an asset by clicking on it; the selection will change to red
the color. A selected asset can be deleted from the scene by pressing key "Del"; however, it
must be stressed that a deletion command cannot be undone. The selection of
components in an assembled asset is possible using the Scene Explorer.

2. Buttons in the Working environment: functionalities and mode of use

Various buttons appear as soon as the application is launched (also in case of empty
scene). The following table describes each button and the associated functionality.

Button Function Use mode

Open/close the side bars
(BabylonJS default function)

Click

Select a saved point of view
(i.e. camera)

Change the view with one click

Increase/decrease movement
speed

Each click on the button
corresponds to the
increasing/decreasing of speed
x2

Full screen
Click to undo (same result with
esc key)

Move the selected asset

Once clicked, select the asset
and move it using the
translation widget that will be
shown

Rotate the selected asset
Once clicked, select the asset
assembly and rotate it using
the rotation widget

Save the scene as a .json file Click

Save the scene as a .json file,
including also the current
cameras (points of view)

Click

Save the current cameras
(points of view) as a .json file

Click

Import a scene from from a
.json file

Click and browse a .json file

Import a camera (point of
view)

Click and browse browse a
.json file

Opens a catalogue GUI
containing all the assets that
can be added to the scene

Click

3. Catalog GUI

The catalog GUI shows the assets that can be added to the scene, as shown in the
following image.

 Catalog GUI

An asset can be added to the scene by clicking on the corresponding icon. After the 3D
representation of the asset is generated, it is possible to move/rotate the asset in the scene.

4. Scene Explorer and Inspector

The Inspector button show/hide two sidebars on the working environment page: Scene
Explorer (left sidebar) and Inspector (right sidebar).

NOTE

On the top of both sidebars there is a command to detach the sidebar from the
scene. This command might be useful in case of a large scene to visualize it on
the whole screen.

empty scene

empty scene

In the Scene Explorer bar it is possible to click on the "+" on the side of Nodes to show all
the items composing the scene in terms of: assets (and their components), cameras and
lights.

It is also possible to select an asset group or a single asset belonging to an assembly.

Materials and Textures can be explored to retrieve further information about the assets and
their 3D representation. Finally, GUI shows the list of items added to the user interface, e.g.
buttons, that can be shown/hidden.

The Inspector" bar consists of the main tabs described in the following subsections.

4.1 Properties

Properties are activated after selecting an asset, camera, light, or material. Some properties
can be manually changed.

In the case of an asset, properties include position, scale and rotation.

In the case of a camera, properties include: position, speed, mode, etc.

In the case of a light, properties include: the intensity of the light, the set-up, and different
setting on the shadows generated by the light.

4.2 Debugging

The second icon of the Inspector allows to enter the area relative to debugging operations.

4.3 Statistics

The third icon is related to the statistics (quantitative properties) of the scene:

FPS (frame per second) at which the scene is running.
COUNT describing the graphical properties of the scene.
FRAME STEPS DURATION showing the dynamical properties of the scene
SYSTEM INFO displaying information related to the hardware and software system, in
therms of graphical and operating system properties.

4.4 Tools

The fourth icon opens a window showing a set of tools:

"Screenshot" to capture the whole current scene in an image that is saved
automatically to the Download folder in a .png file.
"Record video" to start recording the current scene (animation) and then to stop
recording. The video is saved in the Download folder in a .webm file.
"Capture" is equivalent to the Screenshot functionality, though it allows to take a
screenshot of the scene without any button or other GUI feature. It also allows to set
the Precision of the capture or to set its width and height.
"Generate replay code" to download the code of the scene in a .txt format.
"Export to GLB" to save the 3D model of the scene in a .glb file.
"Export to Babylon" to save the scene in a .babylon file.

Input/Output files

Scenes can be imported/exported from/to a .json file according to a specific schema.

The animation of the scene can be defined in another .json file together with additional
data (e.g. reusable animation sequences) stored as .txt files.

Given a scene file named scene.json , the convention is that the corresponding animation

file is named scene_anim.json .

Examples of input files are provided in the Use Case section.

Integration with other software tools

Third party tools can be exploited to automatically generate a scene in .json format that
can be imported by the babylon.js Virtual Factoy application. For instance OntoGui provides
provides such functionalities in the Utilities module.

Advanced Users

Further functionalities of VEB.js can be developed by modifying HTML and JavaScript code
that is available in the folder named $vebjs . This folder may be provided as as a single

.zip file to be unzipped.

Node.js and NPM are needed to run the application. If Node.js and NPM are not already
installed, it is possible to download and run the latest (LTS) Node.js installer confirming the
default settings . NPM (Node Package Manager) is a package manager for JavaScript
language and is included in this installation. For installing the dependencies, open the
command prompt, go to directory $vebjs/js and execute command npm install

It is important to keep the original structure of the $vebjs folder to guarantee a correct

execution of the application, including the access to already available scenes in subfolder
$vebjs/Scenes .

To easily access local files (e.g. 3D models) it is necessary to launch a local host server, as
explained in the following for Windows and MacOS.

Run on Windows: launch the application by double-clicking vebjs_launch.bat in the

$vebjs folder and a browser page will be opened automatically at the address:

http://localhost/vebjs.html?inputscene=

Run on MacOS: first open the terminal and go to the folder $vebjs. Then run the

command sh vebjs_launch.sh and a browser page will be opened automatically at the

address: http://localhost/vebjs.html?inputscene=

Offline/Online use

The default setting of the package allows to run the application offline by exploiting the
libraries (modules) installed in $vebjs/node_modules . However, if an internet connection

is available, the most recent version of the libraries can be accessed by manually modifying
the file $vebjs/vebjs.html ; in this case it is necessary to comment the whole "LOCAL"

block and uncomment the "ONLINE STABLE" block in the <head> .

https://nodejs.org/en/download/

VEB.js as a Tomcat service

The contents of the folder $vebjs can be compressed in a .war file and the application

launched as a Tomcat service.

3.4 ApertusVR
ApertusVR is an open source software library (available on GitHub) to develop AR/VR
applications for science, education, and industry.

The general documentation of ApertusVR can be found here.

A Gamification application based on ApertusVR libraries was developed to support
teaching and training in a VR environment. The following pages present the two versions
of the the VLFT Gamification App (Version 1 and Version 2). More details can be found
here.

OntoGui can be exploited to generate input files for the VLFT Gamification application.

3. VLF Tools and Libraries

https://en.wikipedia.org/wiki/Library_(computing)
https://github.com/MTASZTAKI/ApertusVR
https://apertus.gitbook.io/vr/
https://apertus.gitbook.io/vr/samples/virtual-learning-factory-toolkit-gamification

Virtual Learning Factory Toolkit
Gamification - Version 1
The aim of VLFT Gamification is exploiting the advances and technologies of modern
games to provide students with a realistic representation of a real manufacturing system,
making use of VR visualization experiences.
Students will learn how to analyse the configuration of a manufacturing systems in terms
of:
⦁ products manufactured and the associated process;
⦁ machines, associated capability and processing times;
⦁ occurrence of failures and their statistics;
⦁ identify the bottlenecks in the system. In particular, the students could enter the VR
environment of a manufacturing systems where they will find its VR representation, i.e., a
production line.

Workflow of a VLFT Gamification Session:
1: The teacher starts a Gamification Session on the cloud server
2: Students can connect to the desired Gamification Session and sharing the same VR
visualization of the manufacturing system.

https://apertus.gitbook.io/vr/tutorial-virtual-learning-factory-toolkit/installation
https://apertus.gitbook.io/vr/tutorial-virtual-learning-factory-toolkit/lobby-ui

3: Interactions between the participants can be made via the specific Student User Interface
and Teacher User Interface

https://apertus.gitbook.io/vr/tutorial-virtual-learning-factory-toolkit/student-ui
https://apertus.gitbook.io/vr/tutorial-virtual-learning-factory-toolkit/teacher-ui

Installation

VLFT Gamification Installer

The latest version of the VLFT Gamification can be downloaded here

After the installation was completed a folder named VLFT_Gamification can be founded in
the desktop.

http://srv.mvv.sztaki.hu/temp/vlft/VLFT_Gamification132.exe

Shortcut for the VLFT Gamification

A shortcut for the VLFT Gamification application can be founded. After its clicked then a
Lobby User Interface should be displayed

https://apertus.gitbook.io/vr/tutorial-virtual-learning-factory-toolkit/lobby-ui

Lobby - User Interface

Lobby GUI

After the VLFT Gamification Application started the Lobby GUI will appear.

On the right side of the screen the chat window can be used to send a massage to the other
on-line participants in the Lobby.

The next steps are describe how to join a VLFT Gamification Session by using the left
menu of the Lobby screen:
1: Enter a UNIQUE user name
2: Choose a user type
3: Refresh available rooms
4: Click on the desired room
5: Click on the Connect button

Based on the chosen type of the user the following specific User Interfaces can be showed
up:
1: Student User Interface

https://apertus.gitbook.io/vr/tutorial-virtual-learning-factory-toolkit/student-ui

2: Teacher User Interface
3: Local User Interface

https://apertus.gitbook.io/vr/tutorial-virtual-learning-factory-toolkit/teacher-ui
https://apertus.gitbook.io/vr/tutorial-virtual-learning-factory-toolkit/local-ui

Local - User Interface

Local User Interface

The Local User Interface can be used for testing the resources and the animation on a local
machine.

On the bottom-left side of the menu the Information Box contains the properties of the
clicked object.
By the help of the "i" Info Button the Information Box can be toggled (hide/show).

On the left side of the menu the following buttons are available:
1: File Button for downloading all of the states of the manufacturing cell into a log file on
the local machine
2: Bookmark Button for starting the animation at a bookmarked time
3: Play Button for starting the animation from the beginning

Right after the Play Button or the Bookmark Button is clicked then the Animation Player
Menu will be displayed.

Animation Player Menu

The Animation Player Menu contains the well-known buttons to:
- Pause
- Stop
- Fast Forward
- Fast Bacward
- Jump to the End
- Jump to the Begin

On the right side of the menu the Screen Capture Button and the Scree Cast Video Button is
placed. By the help of that buttons a picture or a video can be taken and saved into the
installation folder.

Student - User Interface

Student User Interface

The Student User Interface is responsible for allowing the desired interactions with the VR
space and its elements and also with the other participants in the VLFT Gamification
Session.

On the bottom-left side of the menu the Information Box contains the properties of the
clicked object.
By the help of the "i" Info Button the Information Box can be toggled (hide/show).

On the right side of the menu the Chat Window can be used to send a massage to the other
participants in the VLFT Gamification Session.
By the help of the Chat Button the Chat Windows can be toggled (hide/show).

On the left side of the menu the following buttons are available:
1: File Button for downloading all of the states of the manufacturing cell into a log file on
the local machine

Animation Player Menu

2: Bookmark Button for starting the animation at a bookmarked time
3: Play Button for starting the animation from the beginning

Right after the Play Button or the Bookmark Button is clicked then the Animation Player
Menu will be displayed.

The Animation Player Menu contains the well-known buttons to:
- Pause
- Stop
- Fast Forward
- Fast Bacward
- Jump to the End
- Jump to the Begin

On the right side of the menu the Screen Capture Button and the Scree Cast Video Button is
placed. By the help of that buttons a picture or a video can be taken and saved into the
installation folder.

Teacher - User Interface

Teacher User Interface

The Teacher User Interface allows the supervisor functionality during a VLFT Gamification
Session. Also responsible for allowing the desired interactions with the VR space and its
elements. Moreover, the student participants can be guided during the VLFT Gamification
Session via the Teacher User Interface.

On the bottom-left side of the menu the Information Box contains the properties of the
clicked object.
By the help of the "i" Info Button the Information Box can be toggled (hide/show).

On the right side of the menu the Chat Window can be used to send a massage to the other
participants in the VLFT Gamification Session.
By the help of the Chat Button the Chat Windows can be toggled (hide/show).

The supervisor functionalities are available via the following buttons:
1: People Button lists the name of the student
2: File Button logs the movement of the student into the installation folder as a log file

Animation Player Menu

3: Lock Button attaches the students' viewpoint to the teacher's point of view
4: Map Button draws a 2D map and displays the positions of the students relative to the
teacher position

On the left side of the menu the following buttons are available: 1: File Button for
downloading all of the states of the manufacturing cell into a log file on the local machine
2: Bookmark Button for starting the animation at a bookmarked time 3: Play Button for
starting the animation from the beginning

Right after the Play Button or the Bookmark Button is clicked then the Animation Player
Menu will be displayed.

The Animation Player Menu contains the well-known buttons to:
- Pause
- Stop
- Fast Forward
- Fast Bacward
- Jump to the End
- Jump to the Begin

On the right side of the menu the Screen Capture Button and the Scree Cast Video Button is
placed. By the help of that buttons a picture or a video can be taken and saved into the
installation folder.

VLFT Gamification Session

After the Teacher started the desired VLFT Gamification Session on the cloud server then
the Students will be able to connect and sharing the same VR visualization of the
manufacturing system.

The following two videos (Teacher and Student) demonstrate the functionalities of the
Teacher User Interface and the Student User Interface
Start these videos at the same time in parallel to get the proper experience during the
playback.

ApertusVR VLFT Gamification Teacher https://youtu.be/ennR9xIppNw?t=33

ApertusVR VLFT Gamification Student

https://www.youtube.com/watch?
v=HW366go15I8&list=PLMFKeF-
URkJqHTYf4b8KM9GQTOuBV5X1K&inde
x=42

https://apertus.gitbook.io/vr/tutorial-virtual-learning-factory-toolkit/teacher-ui
https://apertus.gitbook.io/vr/tutorial-virtual-learning-factory-toolkit/student-ui
https://youtu.be/ennR9xIppNw?t=33
https://www.youtube.com/watch?v=HW366go15I8&list=PLMFKeF-URkJqHTYf4b8KM9GQTOuBV5X1K&index=42

VR Mode

The VLFT Gamification Application supports the following two standards for enabling the
VR Mode on various VR HMDs:
1: OpenVR for HTC Vive and Oculus Rift
2: OpenXR for Windows Mixed Reality Headsets

ApertusVR VLFT Gamification VR Mode

https://www.youtube.com/watch?
v=3cd4thZ-Dw0&list=PLMFKeF-
URkJqHTYf4b8KM9GQTOuBV5X1K&inde
x=41

The OpenVR Plugin of ApertusVR can be used for visualizing a real manufacturing system
during a VLFT Gamification Session.
The following configurations provide sample how to utilize the OpenVR Plugin of
ApertusVR during a VLFT Gamification Session.
https://github.com/MTASZTAKI/ApertusVR/blob/bb69eac9cba66c5c1a8076871d6de1bc9
a32893f/samples/virtualLearningFactory/studentHtcVive/apeCore.json
https://github.com/MTASZTAKI/ApertusVR/blob/bb69eac9cba66c5c1a8076871d6de1bc9
a32893f/samples/virtualLearningFactory/studentHtcVive/apeOgreRenderPlugin.json
Based on the above-mentioned configurations the following two configuration can be
modified in the installation folder of VLFT Gamification:
c:\VLFT_Gamification\13\samples\virtualLearningFactory\apeCore.json
c:\VLFT_Gamification\13\samples\virtualLearningFactory\apeOgreRenderPlugin.json

The OpenXR Plugin of ApertusVR can be used for visualizing a real manufacturing system
during a VLFT Gamification Session. The following configurations provide sample how to
utilize the OpenXR Plugin of ApertusVR during a VLFT Gamification Session.
https://github.com/MTASZTAKI/ApertusVR/blob/0.9.1/samples/hmd/openXR/apeCore.jso
n
https://github.com/MTASZTAKI/ApertusVR/blob/0.9.1/samples/hmd/openXR/apeOgreRe
nderPlugin.json
Based on the above-mentioned configurations the following two configuration can be
modified in the installation folder of VLFT Gamification:

https://www.steamvr.com/en/
https://www.khronos.org/openxr/
https://www.youtube.com/watch?v=3cd4thZ-Dw0&list=PLMFKeF-URkJqHTYf4b8KM9GQTOuBV5X1K&index=41
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/hmd/openVR
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/hmd/openVR
https://github.com/MTASZTAKI/ApertusVR/blob/bb69eac9cba66c5c1a8076871d6de1bc9a32893f/samples/virtualLearningFactory/studentHtcVive/apeCore.json
https://github.com/MTASZTAKI/ApertusVR/blob/bb69eac9cba66c5c1a8076871d6de1bc9a32893f/samples/virtualLearningFactory/studentHtcVive/apeOgreRenderPlugin.json
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/hmd/openXR
https://github.com/MTASZTAKI/ApertusVR/tree/0.9.1/plugins/hmd/openXR
https://github.com/MTASZTAKI/ApertusVR/blob/0.9.1/samples/hmd/openXR/apeCore.json
https://github.com/MTASZTAKI/ApertusVR/blob/0.9.1/samples/hmd/openXR/apeOgreRenderPlugin.json

c:\VLFT_Gamification\13\samples\virtualLearningFactory\apeCore.json
c:\VLFT_Gamification\13\samples\virtualLearningFactory\apeOgreRenderPlugin.json

Virtual Learning Factory Toolkit
Gamification - Version 2
The aim of VLFT Gamification is exploiting the advances and technologies of modern
games to provide students with a realistic representation of a real manufacturing system,
making use of VR visualization experiences. Students will learn how to analyse the
configuration of a manufacturing systems in terms of: ⦁ products manufactured and the
associated process;
⦁ machines, associated capability and processing times;
⦁ occurrence of failures and their statistics;
⦁ identify the bottlenecks in the system.

In particular, the students could enter the VR environment of a manufacturing systems
where they will find its VR representation, i.e., a production line.

Workflow of a VLFT Gamification Session:
1: The teacher starts a Gamification Session on the cloud server

2: Students can connect to the desired Gamification Session and sharing the same VR
visualization of the manufacturing system.
3: Interactions between the participants can be made via the specific Student User Interface
and Teacher User Interface

Installation on Windows

The latest version of the VLFT Gamification can be downloaded here

VLFT Gamification Installer

After the installation was completed a folder named VLFT_Gamification can be founded in
the desktop.

http://srv.mvv.sztaki.hu/temp/vlft/VLFT_Gamification203.exe

Installation on Apple

The latest version of the VLFT Gamification can be downloaded here

Unzip it and move it into the applications folder, after that right click->open. If a window
pops up with a text that you can not open it because the developer cannot be verified, then
click close, and right click again->open.

After that it should start and a window should pop up ascing for permission. Click Open
System Preferences and with the + icon grant it permission for keystrokes and grant it full
disk access.

After this, you should be able to use the application.

http://srv.mvv.sztaki.hu/temp/vlft/VLFT_Gamification203_11_0.zip

Lobby

After the VLFT Gamification Application started the Lobby GUI will appear.

Two options are available:
 1: Single-player mode
 2: Multi-player mode

 2.1: Student mode
 2.2: Teacher mode

The list of uploaded rooms will appear in the case of Single-player mode. After the desired
room was selected and the "Start" button was clicked then the resources will be updated on-
demand and the configuration files of the selected room will be downloaded. The room is
only available locally for one user no other participant can be involved.

The list of online rooms will appear in the case of Multi-player mode. After the desired room
was selected and the "Join" button was clicked then the resources will be updated on-
demand and the user will be involved in a shared room with other participants.

Single Player

The Single Player Interface can be used for testing the resources and the animation on a
local machine.

The "Info" contains the properties of the clicked object. This menu element can be toggled
to hide/show by the ▽

By the help of the "Manipulator", the selected/clicked object can be moved to the desired
place. This menu element can be toggled to hide/show by the ▽

The "Animation" menu allows controlling of the play of the pre-recorded motions of the
objects. This menu element can be toggled to hide/show by the ▽

The animation can be controlled by the pause and stop buttons. The current state of the
objects can be toggled to hide/show by the "show headers" checkbox.

The "Screenshot" Button and the "Screencast" Button allow the possiblity to make a picture
or a video which will be saved into the installation folder.

Multi Player - Student

The Student User Interface is responsible for allowing the desired interactions with the VR
space and its elements and also with the other participants in the VLFT Gamification
Session.

The "Info" contains the properties of the clicked object. This menu element can be toggled
to hide/show by the ▽

The "Screenshot" Button and the "Screencast" Button allow the possiblity to make a picture
or a video which will be saved into the installation folder.

The Chat Window can be used to send a massage to the other participants in the VLFT
Gamification Session.

Multi Player - Teacher

The Teacher User Interface allows the supervisor functionality during a VLFT Gamification
Session. Also responsible for allowing the desired interactions with the VR space and its
elements. Moreover, the student participants can be guided during the VLFT Gamification
Session via the Teacher User Interface.

The "Info" contains the properties of the clicked object. This menu element can be toggled
to hide/show by the ▽

By the help of the "Manipulator", the selected/clicked object can be moved to the desired
place. This menu element can be toggled to hide/show by the ▽

The "Animation" menu allows controlling of the play of the pre-recorded motions of the
objects. This menu element can be toggled to hide/show by the ▽

The animation can be controlled by the pause and stop buttons. The current state of the
objects can be toggled to hide/show by the "show headers" checkbox.

The "Screenshot" Button and the "Screencast" Button allow the possiblity to make a picture
or a video which will be saved into the installation folder.

The control of the students' can be done by the following buttons:
 1: "Attach users" button attaches the students' viewpoint to the teacher's point of view

 2: "Log movements" button logs the movement of the student into the installation folder
as a log file

3.5 MTM

Introduction

The methods time measurement - universal analyzing system (MTM-UAS) is a
methodology to clearly measure the processing times of some determined processes made
by the operators, both manually and with the aid of some tools. The MTM methodology
has been introduced in the '90s, and the last version is one of the most flexible and fast-to
apply techniques, suitable in cases where relatively simple and short actions of the operator
are involved. It is based on the classification of the possible operations done by the
operator in 7 sections, that are translated in tables with different attributes from each other
that returns values of processing TMUs depending on the situation.

MTM-UAS is a widely used method in the industry, especially when speaking about lot
production. It is fast to use and quite flexible at the same time but it can have some
limitations:

the focus is on basic operations and not on basic motions like some other versions of
the MTM: this lead to a less accuracy in the evaluation, an important issue in
situations where complex and high-effort actions are required;
subactivities are not taken into account, since the single activity has to be univocally
assaigned to a specific section, and the time value is founded basing on the weight of
the part handled, the accuracy needed in the movement and its difficulty;
due to this, it could be necessary to put attenction in the definition of the activities, to
avoid the underestimation of the time due to a choice of a very large aggregate
activities not providing the due details for the analysis.

3. VLF Tools and Libraries

https://en.wikipedia.org/wiki/Methods-time_measurement

How to start

The tool implementing the MTM-UAS methodology consists of three components:

an excel input file, to be filled with the input data according to the specific instructions
provided;
a python script processing the inputs and classifying the activities according to the the
methodology;
a python script processing input data to estimate the processing times according to the
MTM-UAS methodology;

Figure 1: General architecture of the MTM-UAS tool

Formalise the process

In order to prepare the input data, the process to be descrived and assessed, also
interviewing the opertator in charge of it. The main information to be determined and
defined are:

1. the main basic operations, the main steps of the work at issue;
2. the typology of each operation identified;
3. the information required by each of the operations in order to get the right time value, in

terms of accuracy, difficulty and distance covered.

The MTM-UAS methodology considers different classes of activities reported in the table
below, together with a description:

Type Description

Get and Place grasp and put an object, taking into account its distance and shape

Place put an object in a more or less precise way

Handle Aid tools handling using for example pliers or screwdrivers

Operate the actuation or press of a botton or a lever

Motion Cycles tasks with movements carried out continuously and repeatedly

Body Motions the movements are done to move

Visual Inspection action of the head and eyes to control an element

These clsses of activities must be further detailed according to the 7 tables shown in the
figure below.

According to the different classes of activities, further specifications are needed.

With respect to 'Get and place', the first column refers to the WEIGHT, expressed in daN.
Then the DIFFICULTY is considered only for the low weight case. For the 'Get and place',
'Place' and 'Handle aid' classes also the ACCURACY dimension must be declared.
or the 'Operate', 'Motion cycles' and 'Body motions' classes the specific TYPOLOGY of
activity executed must be specified.
For the classes of activities involving walking, 3 different ranges of distance can be
selected.

Grounding on these specifications, a value for the Time Measurement Unit (1 TMU = 36
milliseconds) is provided,

After this initial assessment it is possible to move to the preparation of the input data.

Prepare the input data

The descrition of the process to be analysed must be provided through an Excel file whose
template can be dowloaded here:

MTMgen.xlsx MTMgen.xlsx - 70KB

It is advisable to change the name of the file according to the process to be analysed, to
have a clear, univocal name without spaces.

The Excel file contains 4 sheets to be filled in:

Activities

This sheet is used to declare the activities to be executed by the human operator (see figure
below):

1. the first column requires the ID of the activities, which have to be put in the order of
execution, starting from 1 until a maximum of 100, that is the maximum number of
activities that this toolkit can analyse in a single process;

2. The second column is for Activity Name, that requires a complete, well identifying and
univocal name of the activity considered (if one name is repeated twice, this means
that the activities are exactly the same);

https://firebasestorage.googleapis.com/v0/b/gitbook-28427.appspot.com/o/assets%2F-Lh1dC9-F-cM6usakky7%2F-MW1SmGiD3VI0SZCTNLE%2F-MW53k7GzX210inpsfb8%2FMTMgen.xlsx?alt=media&token=daefbeb0-1aae-47c5-8c71-57aa32d649de

1. The third column is the most important one, since it requires the Activity Type Code,
that is a number refered to the section/table which the activity has been assigned to:
the right code can be identified by means of the Table 2, and it has to be selected by
the evaluator by chosing the most suitable option between the ones described in the
drop down menu :

Table Code

'Get and Place' 1

'Place' 2

'Handle Aid' 3

'Operate' 4

'Motion Cycles' 5

'Body Motions' 6

'Visual Inspection' 7

Table 2

Paths In the second sheet the assessor will see two tables in the interface: in the first
one, named Locations (Figure 5), he has to insert the meaningful locations of the work,
that are all the starting and the ending points of all the parts and tools at issue, in
addiction to the base working station. Each of them have to be identified by:
a name in the first column
an acronym in the second column, composed by one capital letter and one number
the coordinates in centimeters in the third and the fourth columns, for the X and the Y
respectively. These are the coordinates of the centers of gravity previously identified, in
the step of the analysis of the situation.

Figure 5

Once filled in, this table will be a reference for the definition of the second one, named
Paths, shown in Figure 6.

Figure 6

Here the evaluator needs to compile the columns in the following way:

1. first the ID of the path, with the capital letter "P" followed by numbers from 1 to a
maximum of 100, that is the maximum number of paths that this code can analyse in
a single process;

2. then the second and the third column (START and END) require the acronyms of the
starting and the ending location of the path, respectively;

3. finally in the columns 'Xs' and 'Ys' the coordinates of the starting locations have to be
inserted from the previous table, while in 'Xe' and 'Ye' the ones of the ending locations.

4. Movements This sheet is made up by a main table, named 'Movements' (Figure 7),
whose aim is that of showing the whole movement and so the whole distance covered
by each activity, expressed by the sum of all the paths done during it.

Figure 7

The initial layout seen by the assessor has the first and the second columns, the 'ID' and the
'Activity Name' respectively, already filled with the activities inserted in the first sheet
'Activities', thanks to a direct link between the two sheets. So the input required by the
successive columns, 'Paths Sequence 1, 2, 3,...', is the list of paths done in each activity,
indicated with the path ID defined in the previous sheet, one for each column until a
maximum of 20, that is the maximum number of paths that can be composed to form the
movement of a single activity in this code. To ease this operation, in the same sheet on the
right is reproduced the dual table about "Paths" just seen above, so that the assessor
doesn't need to change the sheet many times to complete his evaluation.

PartsTools

The filling of this last sheet, dedicated to the Parts and Tools used during the working
process, is quite simple (Figure 8):

Figure 8

1. The first column 'ID' requires the ID of the part or tool: for the sake of clarity, the
evaluator should first list all the Parts involved in the work, whose ID has to be
composed by the letter X followed by a univocally identifying number; then, all the
Tools used to accomplish the process have to be listed, with an ID made up with the
letter T followed by a univocally identifying number.

The maximum total number of parts and tools supported by this toolkit is 100.

1. This second column is related to a general 'Description' of the part or tool;
2. The last column, named 'WEIGHT', requires a number indicating the weight of the part

or tool in Kg, previously measured with the aid of the right instruments or by looking at
the technical product sheet.

As a general reminder, the assessor needs to literally follow all the indications given above,
so that the code and consequently the methodology can work properly giving back the right
results. Particularly, a great attention is recommended in being complaint with the names
and acronyms choosen for a given element: they have to be univocal for the same elements
along all the tables. Before passing to the analysis of the Python code, an example to
clarify the approach is showed.

2.1.1 Example (Catenaccio case - Layout 1)

The example provided from the layout 1 of the Catenaccio case analysed in the VLFT
project is very important to understand how to practically apply this part of the toolkit, and
to clearly get the flow of reasoning required by it. In the Figures 9, 10, 11 and 12 are shown
the the just described tables of the Excel input file, properly filled by the assessor with all
the data needed; respectively the "Activities", "Paths", "Movements" and "PartsTools" sheets
are shown.

Figure 9 : the Activities sheet.

Figure 10 : the Paths sheet.

Figure 11 : the Movements sheet.

Figure 12 : the PartsTools sheet.

Execution and results

The final step of the model developed for the MTM-UAS methodology is the downloading
of the Excel file modified by the Python code with the desired outputs: they will be two new
different sheets, one called "Acitivity codes", where basically the times for each single
activity are reported, and the other one called "Total times", where the total processing time
of the working cycle is finally shown. As already mentioned before, also in this case the
attached images are refered to the Excel file of the layout 1 of the Catenaccio case, since
these are output of the Python code so a general model is not available.

In the above figure, that is the "Activity codes" sheet, four columns are displayed:

1. in the first one, called "ID", the ID of the activity considered is shown: the order is not the
one of execution, instead it is considered the typology of activity according to the
MTM-UAS tables, from 'Get and place' to 'Visual inspection';

2. the second one is named "ACTIVITY" and it is for the name of the activities
correspondent to the ID;

3. the third column, called "ACTIVITY CODE", shows a code related to the specific section
to which each activity has been allocated by the code, so that the assessor is able able
to verify both the functioning of the toolkit and make some considerations about his
assumptions and data inserted;

4. the last column is named "ACTIVITY TIME" and contains the time values in TMUs
related to each single activity.

Finally the second output sheet is the one showed in the figures below that basically
reproduce the content of one Excel sheet:

1. In the first seven columns the values of the processing times for each single section are
reported in TMUs;

2. in the last three columns is instead possible to see the final total value of the
processing time for the working cycle considered, in terms of TMUs, seconds and
minutes, that is the final and most important outcome of this methodology.

3.6 MOST

Introduction

The Mynard Operation Sequence Tecnique is a well known methodology in the field of
processing times estimation, based on the object to be moved rather than on the movement
itself, since each motion and action considered is always directly linked to the object at
issue. It is very well structured, since the tables are defined in a univocal way with well
defined sections, so that many aspects of the movements can be taken into account. On
the other hand it is also very fast in the application (faster than MTM-UAS) and flexible,
since it is easy to modify when a change in the working cycle or in an activity occurs. The
Basic MOST is based to a division in three main sections, corresponding to three tables,
named General Move sequence model, for the activities done moving freely in the space,
Tool Use sequence model, for those actions accomplished with the aid of a tool, and
Controlled Move sequence model, for the activities done with a contact with other surfaces.
Each of them are characterized by a predefined sequence of letters, each of which requires
an index to be assaigned by looking at the tables. This brings to the main advantage that
this methodology has, compared to the MTM-UAS: here subactivities are taken into
account, since for each activity inserted, depending on the section, many letters are
available to specify which sub-parts of the macro action contributes to the total time
required. The final sum of all the indexes in the tables will give an indication of the

3. VLF Tools and Libraries

processessing time of the working cycle at issue. Following the main objective of this
project, that is to give back a toolkit of digital instruments to be used in order to ease the
implementation of some methodologies for the measurement of the work, in this specific
package for the Basic MOST the main elements are:

a general excel input file, to be filled in by the operator by
following some specific instructions;
a python code, that takes the table in the Excel input file and uses its values to
compute the required processing time;
one example related to one of the layouts considered for the manual operations in the
Catenaccio case, on which the project is based, so to give the possibility to the user to
have a practical interface for a complete understanding of the methodology.

Limitations

As already said, the MOST is a very widely used methodology in the industrial environment,
very fast and flexible in the application, but it presents also some limitations:

despite the presence of many subactivities to specify the details of the lines inserted by
the assessor, this can also represent a disadvantage, in fact in this way it is very easy
to fall in redundancy, by overestimating the time values for example by inserting
indexes related to the same situation in more than one cell, also related to different
macro-activities. This will be further exaplained in the next chapter;
the tables, as will be seen later, are not so rigorous in the way of assaigning a value
instead of another, in fact the descriptions leave space to a certain arbitrariness in the

judgement;
the choosen version, the Basic MOST, is the most general one and the most widely
used since it includes the majority of the industrial situations to deal with; anyway in
cases with very low distances and cycle times or on the contrary very high distances
with very big loads to handle, this methodology is not so adapted, and the Mini MOST
and Maxi MOST respectively would be a better choice for a good analysis.

How to start

Prepare the assessment

In this first phase the assessor needs to well analyse and understand the process to be
assessed, first by his own and then by interviewing the worker, so to have a clear and
complete view of the situation. The main things to be determined and defined are:

the main operations of the work at issue;
the typology of each operation identified;
the single steps in which each operation considered is diveded.

The fundamental base in order to accomplish these three points is represented by the
following tables, related to three main sections of this methodology:

1. in Figure 2 it is possible to see the 'General move sequence model' table:
Figure 2 - Images-MOST/ugim3.PNG
"General Move deals with the spatial displacement of one or more objects. Under
manual control, the object follows an unrestricted path through the air. If the object is in
contact with, restricted by or attached to another object during the move, the General
Move Sequence Model is not applicable". (Kjell B. Zandin - MOST Work Measurement
Systems)
Here it can be seen that the general sequence of letters describing the considered
subactivities is made up by: A B G A B P A, where:

A = action distance: "this parameter is used to analyze all spatial movements or
actions of the fingers, hands and/or feet, either loaded or unloaded"
B = body motion: "this parameter is used to analyze either vertical motions of the
body or the actions necessary to overcome an obstruction or impairment to body
movement"
G = gain control: "this parameter is used to analyze all manual motions (mainly
finger, hand and foot) employed to obtain complete manual control of an object
and release the object after placement"
P = placement: "this parameter is used to analyze actions at the final stage of an
object’s displacement to align, orient and or engage the object with another object
before control of it is relinquished".

In particular, since one of the objectives of the VLFT project is to create a link
between this methodology and the OCRA kpis estimation methodology, and for the
sake of clarity of the letter sequence, it has been assaigned a univocal sub-activity
name to each single letter: A ---> move empty B ---> body motion G ---> pick object A
---> move object B ---> body motion P ---> place object A ---> move back in position
By looking at the descriptions in the cells of the table it is possible to identify for
each letter which 'box' is the more adapted for the case under consideration.

2. in Figure 3 and 4 the 'Tool use sequence model' tables are shown:
Figure 3 - Images-MOST/ugim4.PNG
Figure 4 - Images-MOST/ugim5.PNG
"The Tool Use Sequence Model is comprised of phases and sub-activities from the
General Move Sequence Model, along with specially designed parameters describing
the actions performed with hand tools or, in some cases, mental processes required
when using the senses as a tool". (Kjell B. Zandin - MOST Work Measurement Systems)
So in this section the activities done with the aid of a tool are analysed, and the general
sequence of letters is the foolowing: A B G A B P * A B P A, where:

A = action distance: "this parameter is used to analyze all spatial movements or
actions of the fingers, hands and/or feet, either loaded or unloaded"
B = body motion: "this parameter is used to analyze either vertical motions of the
body or the actions necessary to overcome an obstruction or impairment to body
movement"
G = gain control. "this parameter is used to analyze all manual motions (mainly
finger, hand and foot) employed to obtain complete manual control of an object
and release the object after placement"
P = placement: "this parameter is used to analyze actions at the final stage of an
object’s displacement to align, orient and or engage the object with another object
before control of the object is relinquished"
For what regards the asterisk in the sequence, it has to be replaced with one of the
following letters, refered to the specific tool actions applied:
F/L = Fasten or Loosen: this parameter is used to establish the time for manually
or mechanically assembling/disassembling one object to another, using the
fingers, hand or a hand tool"
C = Cut: "this parameter covers the manual actions employed to separate, divide or
remove part of an object using a sharp-edged hand tool such as pliers, scissors or
a knife"
S = Surface treat: "this parameter covers the activities aimed at removing
unwanted material or particles from, or applying a substance, coating or finish to,

the surface of an object"
M = Measure: "this parameter includes the actions employed in determining a
certain physical characteristic of an object by using a standard measuring device"
R = Record: "this parameter covers the manual actions performed with a pencil,
pen, marker, chalk or other marking tool for the purpose of recording information"
T = Think: "this parameter refers to the eye actions and mental activity employed to
obtain information (read) or to inspect an object, including reaching to touch, when
necessary, to feel the object"
In particular, since one of the objectives of the VLFT project is to create a link
between this methodology and the OCRA kpis estimation methodology, and for the
sake of clarity of the letter sequence, it has been assaigned a univocal sub-activity
name to each single letter: A ---> move empty B ---> body motion G ---> pick object A
---> move object B ---> body motion P ---> place object F/L - C - S - R - M - T ---> tool
action A ---> move object B ---> body motion P ---> place object A ---> move back in
position
By looking at the descriptions in the cells of the table it is possible to identify for
each letter which ‘box’ is the more adapted for the case under consideration. Of
course for the letters A, B, G and P, the previous table related to the general move
has to be considered for the choice.

3. in Figure 5 is finally showed the 'Controlled move sequence model' table:
Figure 5 - Images-MOST/ugim6.PNG
"Controlled Move describes the manual displacement of an object over a ‘controlled’
path. That is, movement of the object is restricted in at least one direction by contact
with or attachment to another object or the nature of the work demands that the object
be deliberately moved along a specific or controlled path". (Kjell B. Zandin - MOST Work
Measurement Systems) Also here a general sequence of letters related to different sub-
activities is considered: A B G M X I A, where:

A = action distance: "this parameter is used to analyze all spatial movements or
actions of the fingers,vhands and/or feet, either loaded or unloaded"
B = body motion: "this parameter is used to analyze either vertical motions of the
body or the actions necessary to overcome an obstruction or impairment to body
movement"
G = gain control. "this parameter is used to analyze all manual motions (mainly
finger, hand and foot) employed to obtain complete manual control of an object
and release the object after placement"
M = Move controlled: "this parameter is used to analyze all manually guided
movements or actions of an object over a controlled path"

X = Process time: "this parameter is used to account for the time for work
controlled by electronic or mechanical devices or machines, not by manual
actions"
I = Alignment: "this parameter is used to analyze manual actions following the
Move Controlled or at the conclusion of Process Time to achieve the alignment of
objects"
In particular, since one of the objectives of the VLFT project is to create a link
between this methodology and the OCRA kpis estimation methodology, and for the
sake of clarity of the letter sequence, it has been assaigned a univocal sub-activity
name to each single letter: A ---> move empty B ---> body motion G ---> pick object M
---> move in contact X ---> process time I ---> align object A ---> move back in
position
By looking at the descriptions in the cells of the table it is possible to identify for
each letter which ‘box’ is the more adapted for the case under consideration. Of
course for the letters A, B and G, the previous table related to the general move has
to be considered for the choice.

To conclude this part, it is important to specify that for a complete understanding of the
methodology and so of the way in which the activities have to be considered, it is possible
to look at the "MOST Work Measurement Systems" book by Kjell B. Zandin. After this initial
assessment it is possible now to go and see how the concrete application of the
methodology works.

Formalise the process

Prepare the assessment

In this first phase the assessor needs to well analyse and understand the process to be
assessed, first by his own and then by interviewing the worker, so to have a clear and
complete view of the situation. The main things to be determined and defined are:

the main operations of the work at issue;
the typology of each operation identified;
the single steps in which each operation considered is diveded.

The fundamental base in order to accomplish these three points is represented by the
following tables, related to three main sections of this methodology:

1. in Figure 2 it is possible to see the 'General move sequence model' table:
Figure 2 - Images-MOST/ugim3.PNG
"General Move deals with the spatial displacement of one or more objects. Under
manual control, the object follows an unrestricted path through the air. If the object is in
contact with, restricted by or attached to another object during the move, the General
Move Sequence Model is not applicable". (Kjell B. Zandin - MOST Work Measurement
Systems)
Here it can be seen that the general sequence of letters describing the considered
subactivities is made up by: A B G A B P A, where:

A = action distance: "this parameter is used to analyze all spatial movements or
actions of the fingers, hands and/or feet, either loaded or unloaded"
B = body motion: "this parameter is used to analyze either vertical motions of the
body or the actions necessary to overcome an obstruction or impairment to body
movement"
G = gain control: "this parameter is used to analyze all manual motions (mainly
finger, hand and foot) employed to obtain complete manual control of an object
and release the object after placement"
P = placement: "this parameter is used to analyze actions at the final stage of an
object’s displacement to align, orient and or engage the object with another object
before control of it is relinquished".

In particular, since one of the objectives of the VLFT project is to create a link
between this methodology and the OCRA kpis estimation methodology, and for the
sake of clarity of the letter sequence, it has been assaigned a univocal sub-activity
name to each single letter: A ---> move empty B ---> body motion G ---> pick object A
---> move object B ---> body motion P ---> place object A ---> move back in position
By looking at the descriptions in the cells of the table it is possible to identify for
each letter which 'box' is the more adapted for the case under consideration.

2. in Figure 3 and 4 the 'Tool use sequence model' tables are shown:
Figure 3 - Images-MOST/ugim4.PNG
Figure 4 - Images-MOST/ugim5.PNG
"The Tool Use Sequence Model is comprised of phases and sub-activities from the
General Move Sequence Model, along with specially designed parameters describing
the actions performed with hand tools or, in some cases, mental processes required
when using the senses as a tool". (Kjell B. Zandin - MOST Work Measurement Systems)
So in this section the activities done with the aid of a tool are analysed, and the general
sequence of letters is the foolowing: A B G A B P * A B P A, where:

A = action distance: "this parameter is used to analyze all spatial movements or
actions of the fingers, hands and/or feet, either loaded or unloaded"
B = body motion: "this parameter is used to analyze either vertical motions of the
body or the actions necessary to overcome an obstruction or impairment to body
movement"
G = gain control. "this parameter is used to analyze all manual motions (mainly
finger, hand and foot) employed to obtain complete manual control of an object
and release the object after placement"
P = placement: "this parameter is used to analyze actions at the final stage of an
object’s displacement to align, orient and or engage the object with another object
before control of the object is relinquished"
For what regards the asterisk in the sequence, it has to be replaced with one of the
following letters, refered to the specific tool actions applied:
F/L = Fasten or Loosen: this parameter is used to establish the time for manually
or mechanically assembling/disassembling one object to another, using the
fingers, hand or a hand tool"
C = Cut: "this parameter covers the manual actions employed to separate, divide or
remove part of an object using a sharp-edged hand tool such as pliers, scissors or
a knife"
S = Surface treat: "this parameter covers the activities aimed at removing
unwanted material or particles from, or applying a substance, coating or finish to,

the surface of an object"
M = Measure: "this parameter includes the actions employed in determining a
certain physical characteristic of an object by using a standard measuring device"
R = Record: "this parameter covers the manual actions performed with a pencil,
pen, marker, chalk or other marking tool for the purpose of recording information"
T = Think: "this parameter refers to the eye actions and mental activity employed to
obtain information (read) or to inspect an object, including reaching to touch, when
necessary, to feel the object"
In particular, since one of the objectives of the VLFT project is to create a link
between this methodology and the OCRA kpis estimation methodology, and for the
sake of clarity of the letter sequence, it has been assaigned a univocal sub-activity
name to each single letter: A ---> move empty B ---> body motion G ---> pick object A
---> move object B ---> body motion P ---> place object F/L - C - S - R - M - T ---> tool
action A ---> move object B ---> body motion P ---> place object A ---> move back in
position
By looking at the descriptions in the cells of the table it is possible to identify for
each letter which ‘box’ is the more adapted for the case under consideration. Of
course for the letters A, B, G and P, the previous table related to the general move
has to be considered for the choice.

3. in Figure 5 is finally showed the 'Controlled move sequence model' table:
Figure 5 - Images-MOST/ugim6.PNG
"Controlled Move describes the manual displacement of an object over a ‘controlled’
path. That is, movement of the object is restricted in at least one direction by contact
with or attachment to another object or the nature of the work demands that the object
be deliberately moved along a specific or controlled path". (Kjell B. Zandin - MOST Work
Measurement Systems) Also here a general sequence of letters related to different sub-
activities is considered: A B G M X I A, where:

A = action distance: "this parameter is used to analyze all spatial movements or
actions of the fingers,vhands and/or feet, either loaded or unloaded"
B = body motion: "this parameter is used to analyze either vertical motions of the
body or the actions necessary to overcome an obstruction or impairment to body
movement"
G = gain control. "this parameter is used to analyze all manual motions (mainly
finger, hand and foot) employed to obtain complete manual control of an object
and release the object after placement"
M = Move controlled: "this parameter is used to analyze all manually guided
movements or actions of an object over a controlled path"

X = Process time: "this parameter is used to account for the time for work
controlled by electronic or mechanical devices or machines, not by manual
actions"
I = Alignment: "this parameter is used to analyze manual actions following the
Move Controlled or at the conclusion of Process Time to achieve the alignment of
objects"
In particular, since one of the objectives of the VLFT project is to create a link
between this methodology and the OCRA kpis estimation methodology, and for the
sake of clarity of the letter sequence, it has been assaigned a univocal sub-activity
name to each single letter: A ---> move empty B ---> body motion G ---> pick object M
---> move in contact X ---> process time I ---> align object A ---> move back in
position
By looking at the descriptions in the cells of the table it is possible to identify for
each letter which ‘box’ is the more adapted for the case under consideration. Of
course for the letters A, B and G, the previous table related to the general move has
to be considered for the choice.

To conclude this part, it is important to specify that for a complete understanding of the
methodology and so of the way in which the activities have to be considered, it is possible
to look at the "MOST Work Measurement Systems" book by Kjell B. Zandin. After this initial
assessment it is possible now to go and see how the concrete application of the
methodology works.

Prepare the input data

Before analyzing the methodology in detail, it is important to show the structure of the
following explanation: first of all a general approach will be adopted, analysing the general
templates of the input files, explaining all the single steps in order to fill in it; secondly a
specific example will be proposed to show practically the execution of the described steps
and to have a real case of application.

2.1 Excel input file

The input of the procedure will be as already said an Excel file, whose general model can be
found by following the path (folders): PROCESSING TIME ESTIMATION - MOST - PYTHON
CODE, with the name 'MOSTgen.xlsx'. To start the evaluation of a completely new process,
it is necessary to 'copy and paste' this Excel file, that is the model, in the same folder where
the python code will be run. It is advisable to change the name of the file with a name
related to the process to be analysed, clear, univocal and without spaces. After this, it is
possible to go into the details of this file, where there is only one sheet to be filled in: its
name is 'MOST', and it contains many different sections including many different columns
to be filled in, that can be analysed by considering 4 different sections. The first one is
comprehensive of the first three columns of the table, as shown in Figure 6:

1. the first is named ID and it requires the ID of the activity considered, that has to be a
univocal number, put in the order of execution, starting from 1 until a maximum of 100,
that is the maximum number of activities that this toolkit can analyse in a single
process;

2. the second column is for the NAME, that requires a complete, well identifying and
univocal name of the activity considered (if one name is repeated twice, this means
that the activities are exactly the same);

3. the third column, TYPE, is very important since it provides the selection of the section
to which each single activity is related, like shown in the previous chapter: there are
three options, 'G' for general move, 'T' for tool use and 'C' for controlled move; the
choice can be done by selecting the letters in the drop down menu.

The next three sections to be explained are of course related to the main divisions of the
methodology: so starting from Figure 7 it can be seen the general move sequence model
table;

First of all the lines of this section have to be completed only if the Type Code of the
considered activity row is 'G': if it is different, the respective line must be left blank, without
selecting any code from the drop down menu. If instead it has to be filled in, the assessor
needs to insert the right number (1-3-6-10-16) of the list by looking at the MOST table seen
before and reported hereafter (Figure 2), one for each column, correspondent to the

different subactivities: if one subactivity is evaluated as not necessary for that specific
action, the number 0 has to be selected in the cell.

The next section of the table, as shown in Figure 8, is related to the tool use sequence
model:

First of all the lines of this section have to be completed only if the Type Code of the
considered activity row is 'T': if it is different, the respective line must be left blank, without

selecting any code from the drop down menu. If instead it has to be filled in, a distinction
has to be done between two different group of letters:

1. for what regards the columns A, B, G and P the assessor needs to insert the right
number in the list 1-3-6-10-16, by looking at the MOST table about the general move
shown above (Figure 2), one for each column, correspondent to the different
subactivities: if one subactivity is evaluated as not necessary for that specific action,
the number 0 has to be selected in the cell;

2. for what regards instead the columns F/L, C. S, R, M and T the assessor needs to insert
the right number from the list 1-3-6-10-16-24-32-54, by looking at the MOST tables seen
before about the tool use and reported hereafter (Figure 3-4), one for each column,
correspondent to the different subactivities: if one subactivity is evaluated as not
necessary for that specific action, the number 0 has to be selected in the cell: it has to
be specified that generally only one of this cells will contain a value different than zero,
for each activity.

The next and last section of the table, shown in Figure 9, is related to the controlled move
sequence model:

First of all the lines of this section have to be completed only if the Type Code of the
considered activity row is 'C': if it is different, the respective line must be left blank, without
selecting any code from the drop down menu. If instead it has to be filled in, a distinction
has to be done between two different group of letters:

1. for what regards the columns A, B, and G the assessor needs to insert the right number
in the list 1-3-6-10-16, by looking at the MOST table about the general move shown
above (Figure 2), one for each column, correspondent to the different subactivities: if
one subactivity is evaluated as not necessary for that specific action, the number 0 has
to be selected in the cell;

2. for what regards instead the columns M, X and I the assessor needs to insert the right
number from the list 1-3-6-10-16, by looking at the MOST table seen before about the
controlled move and reported hereafter (Figure 5), one for each column, correspondent
to the different subactivities: if one subactivity is evaluated as not necessary for that
specific action, the number 0 has to be selected in the cell.

As a general statement, as already said in the limitations of this methodology, it is
important not to have redundancy in the selection of the numbers, putting attention in not
to replicate some sub-activities in different macro-activities, and so avoiding an
overestimation of the processing times. To better explain this, in the Figure 10 is shown a
tyical error in the assaignment, that if done along the whole cycle it can lead to a
considerable rise of the total time:

The two cells highlighted in yellow are actually related to the same movement: in fact, the 1
put in the last column of the 'release tool A' activity would mean that the operator moves
back in the base position after the movement, while the 1 put in the first column of the
'unload WIP 1' activity would mean that the operator moves from the base position to the
position of the WIP 1: this is an unuseful repetition, since the operator concretely doesn't
need to move back in position after having realesed the tool, for then moving again from
the base position to the next position to be reached; the real movement is that of moving
directly after having realesed the tool to the position of the WIP1, selecting in this way only
the 1 of the second activity and deleting that of the previous. Before passing to the analysis
of the Python code, an example to clarify the approach is showed.

2.1.1 Example (Catenaccio case - Layout 2)

The example provided from the layout 2 of the Catenaccio case analysed in the VLFT
project is very important to understand how to practically apply this part of the toolkit, and
to clearly get the flow of reasoning required by it. In the Figures 11, 12, 13 and 14 the just
described sections of the Excel input file table are shown, properly filled by the assessor
with all the data needed.

Execution and results

Python code

A technical remark needs to be done before describing the procedure: the Excel sheets
taken by the Python as an input are different than the use-interface sheets, the ones filled in
by the assessor: in fact, they are directly linked to dual hidden sheets in the same file,
structured in a way that is more easilly readable by the code. The Python code has two
different versions, the first one named 'MOST_OCRA input loading.ipynb', an extended
version divided in many cells, so to have the possibility to see all the intermediate results of
the code, and the second one named 'MOST_OCRA input loading compressed.ipynb',
where the entire code is put in one cell, so to have the possibility to quickly run it without
taking care about the details. In both the cases the objective is to take the input activities in
the sheet "MOST" of the Excel file just described, starting from the 'Type code' column,
where the code understand which of the three sections it has to consider for that specific
activity (G-T-C); basing on this, the next step is that of reading the correspondent numerical
values inserted in the cells by the assessor and if the number is different than zero, a sub-
activity is formed: for the specific scope of this link-code, a set of sub-activity names has
been created, as already seen in the chapter 1 of this guide, and reported hereafter in the
Table 1:

General
move

Tool use
Controlled
move

A move empty A move empty A move empty

B body motioin B body motion B body motion

G pick object G pick object G pick object

A move object A move object M
move in
contact

B body motion B body motion X process time

P place object P place object I align object

A
move back in
position

F/L-C-S-
M-R-T

tool action A
move back in
position

A move object

B body motion

P place object

A
move back in
position

So basing on this information and considering the cell at issue, the right name is found and
stored to be given as an output. In the same time, the code also analyse the second input
sheet, "Objects_weight", to find and link to the sub-activity just created the respective weight
range of the tool or part used, if there is one. The last thing done by the code is to organize
all the information gathered in order to give them as an Excel output easilly readable and
compliant with the OCRA methodology: in fact the output file now is not again the input
one, but it is a new file that is the Excel input of the OCRA methodology. Anyway the
specific structure will be shown in the next chapter. For all the details regarding the python
code it is possible to look directly at it, and specially at the comments done as an
explanation of all the single steps.

In order to run the model, it was used Microsoft Azure Notebooks program with Python3.6
version.

Please, follow the next mandatory steps:

First of all it is necessary to open the code (the extention is .ipynb), and insert the right
Excel file name in the first and the last cell of it, as shown in Figures 21 and 22:

The code must be run step by step in the same order in which it was developed if the
extended version is choosen, while for the compressed version only one run command
is needed;
Warning: the code is tailor made for this methodology, so be careful in modifying it,
since all the modifications needs to be extended to the whole code in order to make it
funciton;
Anyway this is an open-source toolkit, so any improvement to the code is very
appreciated, following the objective of the VLFT project.

Observations:

The order in which the Input File was fulfilled, does not affect the result of the code.
If after running the model, this generates a message of error on Python, please go back
to the Input File sheet and check that the data inserted are totally compliant with the
guidelines expressed in this guide.

Link OCRA-MOST Expected Outcomes

The final step of the model developed for the MOST-OCRA methodology is the downloading
of the output Excel file modified by the Python code with the desired output: as already
mentioned it will be different than the input one, in fact it will be the OCRA Excel input file,
already structured with many sheets needed for that specific methodology. What this code
does, is to create a new sheet in the file, called 'FPRpy', where the subactivities and their
related information will be displayed. To have a clearer explanation of this, it is possible to
look at the Figure 23:

1. In the first of the five columns, named 'TASK CODE', the code of the macro-activity
considered is inserted, to give to the operator the possibility to have an idea of which
point the process is while considering the different subactivities: this is very important
since new columns have to be filled in aside these, and the assessor need to now which
macroactivities are going to be considered;

2. the second column is called 'TASK NAME' and it is refered to the name of the macro-
activity considered. It is directly related to the previous column, so it also has the same
objective;

3. in the third column, 'TECHNICAL ACTION', the sub-activities names are displayed,
divided per macro-activity, in line with the requirements of the OCRA methodology;

4. in the column 'MOVE TYPE' is put a code univocally indicating the sub-activity
considered: two sub-activities called with the same name are considered as identical
and so their Move Type will be the same;

5. the last column. 'ACTION DURATION', actually provides the time duration of the
specific sub-activity in seconds, basing on the MOST methodology just applied, which
responds in a good way to the OCRA needs.

The final action required to the operator in order to set in the wright way these data is that
of 'copying and paste' as values the five columns of the FPRpy sheet just analysed, in the
first five columns of the sheet FPRdata, that are left black in the original format, as can be
seen in Figure 24:

This is the final step for what regard the link between MOST and OCRA methodologies; of
course now the implementation of the OCRA is required, and for this it is possible to look at
the OCRA User Guide in this toolkit.

3.7 RULA

Introduction

The Rapid Upper Limb Assessment (RULA) is a tool that allow us to evaluate the level of
ergonomic risk associated with the upper extremity postures incurring by a worker who
performs repetitive job tasks. This tool was develop using Microsoft Excel and Python3 in
order to avoid manual procedures to allocate certain scores on the different tables of the
RULA methodology. This methodology assigns a range of scores for the different postures
in upper extremities, neck, trunk and legs taking into account the force and repetition of the
activity, based on the observation of the job task. Being an easy and quick method of
ergonomic analysis, this tool does not require expensive equipment to complete the
information needed to perform the assessment.

Limitations

The RULA is a practical method in terms of saving time and resources; however the
precision of this tool could be affected by lack of information such as duration of the task,

3. VLF Tools and Libraries

available recovery time, or hand-arm vibration. Moreover, the tool may require several RULA
assessments for one task. After the interview and observation of the worker, it is possible to
determine the criticality of the job task: if only one arm should be evaluated or if the
assessment is needed for both sides, that's why usually it is recommended choose the
most extreme posture to evaluate.

Applications

RULA method is usually applied on sedentary tasks such as computer tasks,
manufacturing or retail tasks where the worker is seated or standing without moving about.

How to start

Prepare the assessment

The evaluator should do a previous interview to the worker who is going to be evaluated in
order to understand the job tasks and observe several times the movements and postures
of the worker during the work cycles of the activity.

Related to the job task that should be evaluated, it is important to choose it with the
following criteria:

The most difficult postures and work tasks (given by the previous analysis)
The posture performed for the longest period of time
The posture where the highest force loads occurs.

After this previous analysis, it is possible to start the assessment of the level of MSD risk in
a certain job task in the tool.

Formalise the process

Prepare the input data

Input File

In the Excel Input File called "RULAInputFile.xlsx" (sheet "InputsRULA"), there is a list of
postures that should be evaluated with a given posture scoring scale (an integer value).
This list has an implicit segmentation in two parts: The first part is related to arm and wrist
and the second one is related to neck, trunk and legs. These two parts have additional
adjustments that should be part of the evaluation.

Locate upper arm position

For upper arm position, there is a range of scores between +1 and +4. These scores are
related to the different positions of the upper arm performed in the job task chosen on
the previous step, and this scoring scale could be seen in the Figure 2:

After to choose the most suitable score for this posture, it should be introduce it on the
"Locate upper arm position" - "Score" (Figure 3):

Adjust upper arm

In order to evaluate other aspects of the posture, an adjustment of the previous score
should be made with the criteria given in Table 1:

Table 1:

Observation Score

If shoulder is raised +1

If upper arm is abducted +1

If arm is supported or person is leaning +0

After to choose the most suitable adjustment, it should be introduce it on the "Adjust
upper arm" - "Score" (Figure 4). In case of no necessary adjustment, the score should be
considered zero "0".

Locate lower arm position

For lower arm position, there is a range of scores between +1 and +2. These scores are
related to the different positions of the lower arm performed in the job task chosen, and
this scoring scale could be seen in the Figure 5:

After to chose the most suitable score for this posture, it should be introduce it on the
"Locate lower arm position" - "Score" (Figure 6):

Adjust lower arm

In order to evaluate other aspects of the posture, an adjustment of the previous score
should be made with the criteria given in Table 2:

Table 2:

Observation Score

If either arm is working across midline or out to side of body: Add +1

After to choose the most suitable adjustment, it should be introduce it on the "Adjust
lower arm" - "Score" (Figure 7). In case of no necessary adjustment, the score should be
considered zero "0".

Locate wrist position

For locate wrist position, there is a range of scores between +1 and +3. These scores are
related to the different positions of the wrist performed in the job task chosen and this
scoring scale could be seen in the figure 8:

After to chose the most suitable score for this posture, it should be introduce it on the
"Locate wrist position" - "Score" (Figure 9):

Adjust wrist

In order to evaluate other aspects of the posture, an adjustment of the previous score
should be made with the criteria given in Table 3:

Table 3:

Observation Score

If wrist is bent from midline: Add +1

After to choose the most suitable adjustment, it should be introduce it on the "Adjust
wrist" - "Score" (Figure 10). In case of no necessary adjustment, the score should be
considered zero "0".

Wrist twist

For wrist twist position, there are two scores: +1 and +2. These scores are related to the
different twist movements of the wrist, performed in the job task chosen. The
motivations of this scoring scale could be seen in the Table 4:

Table 4:

Observation Score

If wrist is twisted in mid-range +1

If wrist is at or near end of range +2

After to chose the most suitable score for this posture, it should be introduce it on the
"Wrist twist" - "Score" (Figure 11):

Add arm muscle use on arms and wrist

For the usage of the arm muscle, there is a score of +1. This score is related to the
different efforts of the arm and wrist muscle performed in the job task chosen and this
scoring scale could be seen in the Table 5:

Table 5:

Observation Score

If posture mainly static (i.e. held>1 minute) +1

If action repeated occurs 4X per minute +1

After to choose the most suitable score for this adjustment, it should be introduce it on
the "Add Arm Muscle use score A" - "Score" (Figure 11). In case of no necessary
adjustment, the score should be considered zero "0".

Add force/load on arms and wrist

For the force/load on arms and wrist, there is a range of scores between +0 and +3.
These scores are related to the different ranges of weight of the force/load performed by
arms and wrist in the job task chosen and this scoring scale could be seen in the Table 6:

Table 6:

Observation Score

If load < 4.4 lbs. (intermittent) +0

If load 4.4 to 22 lbs. (intermittent) +1

If load 4.4 to 22 lbs. (static or repeated) +2

If more than 22 lbs. or repeated or shocks +3

After to choose the most suitable score for this adjustment, it should be introduce it on
the "Add Force/Load score A" - "Score" (Figure 13).

Locate neck position

For locate neck position, there is a range of scores between +1 and +4. These scores are
related to the different positions of the neck performed in the job task chosen and this
scoring scale could be seen in the figure 14:

After to chose the most suitable score for this posture, it should be introduce it on the
"Locate neck position" - "Score" (Figure 15):

Adjust neck

In order to evaluate other aspects of the posture, an adjustment of the previous score
should be made with the criteria given in Table 7:

Table 7:

Observation Score

If neck is twisted +1

If neck is side bending +1

After to choose the most suitable adjustment, it should be introduce it on the "Adjust
neck" - "Score" (Figure 16). In case of no necessary adjustment, the score should be

considered zero "0".

Locate trunk position

For locate trunk position, there is a range of scores between +1 and +4. These scores are
related to the different positions of the trunk performed in the job task chosen and this
scoring scale could be seen in the figure 17:

After to chose the most suitable score for this posture, it should be introduce it on the
"Locate trunk position" - "Score" (Figure 18):

Adjust trunk

In order to evaluate other aspects of the posture, an adjustment of the previous score
should be made with the criteria given in Table 8:

Table 8:

Observation Score

If trunk is twisted +1

If trunk is side bending +1

After to choose the most suitable adjustment, it should be introduce it on the "Adjust
trunk" - "Score" (Figure 19). In case of no necessary adjustment, the score should be
considered zero "0".

Legs

For locate legs position, there are two scores: +1 and +2. These scores are related to the
different positions of the legs performed in the job task chosen and this scoring scale
could be seen in the Table 9:

Table 9:

Observation Score

If legs and feet are supported +1

If legs and feet are not supported +2

After to chose the most suitable score for this posture, it should be introduce it on the
"Legs" - "Score" (Figure 20):

Add muscle use on neck, trunk and legs

For the usage of the muscle on neck, trunk and legs, there is a score of +1. This score is
related to the different efforts of the neck, trunk and legs muscle performed in the job
task chosen and this scoring scale could be seen in the Table 10:

Table 10:

Observation Score

If posture mainly static (i.e. held>1 minute) +1

If action repeated occurs 4X per minute +1

After to choose the most suitable score for this adjustment, it should be introduce it on
the "Add Muscle use score B" - "Score" (Figure 21). In case of no necessary adjustment,
the score should be considered zero "0".

Add force/load on neck, trunk and legs

For the force/load on neck, trunk and legs, there is a range of scores between +0 and +3.
These scores are related to the different ranges of weight of the force/load performed by
neck, trunk and legs in the job task chosen and this scoring scale could be seen in the
Table 11:

Table 11:

Observation Score

If load < 4.4 lbs. (intermittent) +0

If load 4.4 to 22 lbs. (intermittent) +1

If load 4.4 to 22 lbs. (static or repeated) +2

If more than 22 lbs. or repeated or shocks +3

After to choose the most suitable score for this adjustment, it should be introduce it on
the "Add Force/Load score B" - "Score" (Figure 22). In case of no necessary adjustment,
the score should be considered zero "0".

For a matter of information, it will be presented the three following sheets in the RULA Input
File: "TableA" (Figure 23), "TableB" (Figure 24) and "TableC" (Figure 25). They are part of the
theoretical basis of the RULA methodology and represent the different combinations of the
scores chosen in the previous sheet "Input File" classified by:

TableA or Section A: Arms (Upper and Lower), Wrist and Wrist Twist
TableB or Section B: Neck, Trunk and Legs
TableC or Section C: Final result from combination of both, final score TableA and final
score TableB.

Remember the user must not complete any information in those tables, that's why after to
finish the process of choose the different scores, the RULA Input File must be save it.
Finally, this document will be imported into Python in order to continue with the
programming part in the next steps.

Execution and results

Python Code

In order to run the model, it was used Anaconda "Jupyter Notebook" program with Python3
version.

Please, follow the next mandatory steps:

Before to run the model, it is necessary to verify if the Input File document is saved in
the same folder where the Python code is stored.
The model must be run step by step in the same order in which the model was
developed, installing first the available libraries on Python (NumPy, Pandas).
The next steps in the Python Code import the Tables (A, B and C) from the RULA Input
File, in order to use this information to find the final score per each section: Section A =
Arms and Wrist, Section B = Neck, Trunk and Legs and the final solution: Section C =
Total Assessment
In the last part of the code, the final result per each section will be export to the RULA
Input File.

Observations:

The order in which the Input File was fulfilled, does not affect the result of the code.
If after running the model, this generates a message of error on Python, please go back
to the Input File sheet and check that the scores are within the scoring scale range
corresponding to each position/adjustment.

Expected Outcomes

After exporting the final result of the Python Code into the RULA Input File, this will be
stored in the last sheet of the document with the name "OutputsRULA".

The table with the results will be organised in the following way (Figure 26):

The range of Level of MSD Risk from the RULA methodology, is given by the following table
(Figure 27):

3.8 OCRA

Introduction: the OCRA method

The OCRA method is a widely adopted approach for analysing workers’ exposure to tasks
featuring various upper limb (UL) risk factors like repetitiveness, force, awkward postures
and movements, lack of recovery periods, and others . This methodology has been
approved as best practise by the International Ergonomics Association (IEA) to monitor and
predict the risk of upper limbs WMSDs, the most frequently reported cause of injury among
european workers (source) . Nowadays, OCRA is adopted by over 30'000 technical
specialists in Europe , like OSH operators, ergonomists and production engineers, guiding
them to re-design organisational and physical workspace improving both productivity and
operators' health in the long run.

Application

Despite its sophistication, this methodology is very time-consuming demanding several
days to train operators in recognise and collect data regarding different MSDs risk
dimensions: for this reason this procedure can be adopted only by experts who want to
properly re-design the operators tasks. Furthermore, as the user will see in the following
chapters, this methodology gives high relevance to the relationship between the duration of
a task and the risk associated to it, deeply penalising manual processes in which the Cycle
Time is equally distributed among tasks i.e. mounting/dismounting operations involving a
limited set of screwdrivers.

3. VLF Tools and Libraries

For this reason, the OCRA method has been applied in a wide portfolio of industrial cases in
the manufacturing and service sector, where jobs involving repetitive movements and/or
efforts of the upper limbs were heterogeneous and complex. Main examples: Manufacture
of mechanical components, electrical appliances, automobiles but also cloth textile and
food processing.

This guide will support future users to understand the theoretical concepts concerning the
OCRA methodology and will clarify the main steps for their adoption in the digital toolkit.

How to start

Main concepts and definitions

Job or Organised Work: it represents the set of tasks (even repeated) made by an
operator during his/her shift (even considering multiple cycles of execution).
Task: A specific work activity aimed at obtaining a specific result (e.g.,
clamping/unclamping a piece, loading/unloading a pallet etc.) that can be repeated
after each cycle.
Cycle: A sequence of tasks performed by the upper limbs, which is repeated several
times in the same way; in a practical contest, a cycle is considered as the set of tasks
that an operator must accomplish to close a working loop, after which he/she will start
again.
Cycle Time: The total time assigned to carry out the sequence of tasks that
characterises the cycle
Technical Action: An elementary movement involving the upper limbs that represents
the simplest operation to be evaluated by the OCRA method; a set of technical actions
make a task.
Frequency: Number of technical actions performed per unit of time [min]
Force: Physical effort required by the worker to perform a technical action.
Awkward Postures and Movements: Non-neutral postures and movements of the main
joints of the upper limbs adopted to complete a sequence of technical actions
characterising a cycle, whom impact in terms of MSDs is functional to the time
exposure.
Stereotypy or Repetitiveness :The repetition of the same gesture or series of gestures
for most of the work period or shift.
Recovery Period: The time interval within a shift during which the upper limbs are
substantially inactive (i.e., the limbs are not performing any technical actions).
Additional Factor of Risk: factor that takes into account the presence of additional risk
of both physio-mechanical and organisational nature at the task level.

OCRA Index main formulas

The OCRA Index is obtained by the ratio between the number of actual technical actions
(ATA) currently performed in a work shift and the corresponding number of recommended
technical actions (RTA):

$OCRA_Index = ATA/RTA$

The number of actual technical actions performed in a shift: ATA**

The definition of the ATA for a single task is a simple procedure divided into two steps:

1. The computation of the Net Duration of Repetitive tasks (D) in a shift [min/shift]
2. The computation of the Average Frequency of Action per minute (F) for the task

[act./min]
Total Net Duration of Repetitive tasks: D-

The first step in the OCRA methodology always looks at the organisational background of
the company: which kind of shifts are distributed over the week? How many shifts per day
are there? Which is the break schedule? How significant is the amount of time spent in non-
conventional activities like cleaning, maintenance or financial inspections? To derive D, the
following formula is applied:

D = Shift Duration - Total break time - Total non repetitive work time - Work time valued as
recovery

Where all figures are derived by either organisational structure of the company's shifts or by
direct observation of workers' behaviour. Since the literature suggests that the D parameter

should be computed for each task considered in the cycle, repeating the same procedure
anytime we want to add another job to the set of operations performed in a shift, the
amount of required data regarding the scheduling efficiency of a company becomes very
high and subjected to uncertainty. (e.g. break times are not always respected precisely, non-
repetitive activities can impact on the available time of different sets of tasks, anytime they
happen).

For this reason, we assumed for our toolkit a simplification that, despite changing the
computation approach for the D parameter of the methodology, doesn't affect significantly
the outcome of the analysis, while it reduces significantly the time spent in the data
collection phase:

Assumption: The Net duration of a single repetitive task is given by the product between D
and the %duration of a task in a working cycle, relative to the Cycle Time:

Dtask = D ⋅ taskdur/CT

Average Frequency of Action per minute/shift for a task: F-

It requires as input the set of tasks performed by the operator within a working cycle, the
decomposition of each task in a set of elementary movements (least aggregated data
analysed in the methodology), the shift length in minutes, the #pieces manufactured in a
shift and the Cycle Time in [sec]. Then, F is computed as:

FF = (#actions\task ⋅ #cycles\shift) ⋅ 60/CT

Assumption: the average number of pieces produced in a shift corresponds to the number
of cycles in which all the tasks are performed within a shift. To derive this value, if not
already available, is sufficient to estimate the total time (human and machine) required to
manufactured a finished product and divide the shift duration for that value:

#pieces manufactured = Shift Duration / Total time to manufactured a finished product

Finally, the ATA is obtained through the following formula, for each task in the cycle:

$ATAtask = F ⋅ Dtask$

The ATA of the entire cycle is given from the sum of all the ATA_tasks in one cycle.

1.2 The number of recommended technical actions performed in a shift: RTA

The computation of the Recommended Number of Technical actions is a more complex
procedure involving the computation of the following parameters: DuM, RcM, CF, FoM, PoM,
ReM and AdM.

-Duration Multiplier: DuM-

Once D has been computed for the entire cycle of tasks, the table below is addressed to
directly computing the value of the Duration Multiplier:

-Recovery Multiplier: RcM-

The Recovery Multiplier is empirically estimated once observing the operator's working
behaviour and deriving the average maximum time without recovery within a shift; a
reference table can then associate this indicator to the RcM:

-CF parameter-

The action frequency constant is generally set equal to 30 actions/min as a reference
value, but to guarantee a good estimated of the RTA, it should be defined roughly
considering the ratio between the number of technical action in one cycle and the cycle
time.

-Force Multiplier : FoM-

The computation of the force multiplier requires a considerable degree of accuracy in the
data collection phase, since values for the duration, the force load and the body area (right,
left or total) involved in the technical action must be properly extrapolated either through
operator movements' simulation, general assumptions or direct observation (latter case
may not be possible due to privacy issues).

The FoM computation is divided into three steps:

1. Task division into technical actions (T.A.): to ensure the highest degree of accuracy
possible, a process supervisor (e.g. an ergonomist, a qualified operator) must decompose
all the tasks of a cycle into elementary movements for whom posture and force factors can
be estimated without bias.

2. Force Score (F.S.) computation: The force score is obtained by computing the force load,
expressed through Borg CR-10 Scale (table below), that accounts for the weight of the
object carried out in a task. If multiple T.A. are included in a single task, then the Weighted
Force Score is computed by weighting the force load of each T.A. for the %time spent in the
force exertion relative to the Cycle Time:

3. FoM computation: once the Weighted F.S. has been defined for a task, a multiplier table
can be directly consulted for the extrapolation of the FoM:

-Posture Multiplier: PoM-

The estimation of the risk associated to operators'exposure to awkward postures is the
most time-consuming step of the OCRA methodology, due to the high accuracy required
and the multiple body areas considered in the analysis. Like the FoM, also the posture
multiplier computation is task-specific and considers a weighted value if multiple T.A. are
investigated for a single task.

Assumption: For the sake of consistency, in our model we rely on the same tasks' duration
considered in the previous step, assuming that there is no distinction between the T.A.
execution time and the time spent in an awkward posture (regardless the body area
involved) for that T.A.;

According to the method, 4 body areas for the Upper Limbs are assessed in terms of MSD
risk: Shoulders, Elbows, Wrists and Hands. As shown in the tables below, for each area of
the operator's upper limbs, a set of reference harmful movements and postures is defined; a
posture score is then set by matching the type of harmful movement/posture and the
%time spent in that posture relative to CT:

Assumption: considering the same body area, at most one dangerous movement can be
identified in a T.A. performed by the operator; however, a T.A. can be harmful for multiple
body areas. To sum up, the number of awkward postures associated to a T.A. can go from
0 to 4 at most.

The computation of the PoM follows two steps:

1. Posture Scores (P.S.) computation: respecting the task sub-division defined in the
previous analysis , each elementary movement is assessed by either simulation or direct
observation of the operator's behaviour to identify the presence of possible awkward
postures. If multiple T.A. belonging to the same task have the same awkward posture, the
cumulative %time respect to the CT, spent in an awkward posture must be considered in the
score table. In this way, posture scores are properly computed and grouped at the task level.

2. Total posture score (Total P.S.) computation: Once computing the P.S. for each awkward
posture made in a task, the Total P.S. is obtained by summing together the partial scores
belonging to the same Posture Area (shoulder, elbow, wrist or hand).

3. PoM computation: for each task, the highest among the Total P.S. is picked considering
the four body areas; then, this value is used in the posture risk table to derive the
correspondent Posture Multiplier:

-Repetitiveness as a risk factor: ReM-

The literature review suggests that repetitiveness of movements or postural efforts can
become a relevant driver of MSD when at least one out of three of these conditions is
satisfied:

a. Identical technical actions or groups of identical technical actions are repeated for
almost the entire cycle time (0-50% absent risk; 50%-80% moderate risk; >80% high risk)

b. Static postures are sustained along a great portion of the cycle time (0-50%: absent risk;
50%-80%: moderate risk; >80%: high risk)

c. Operators execute multiple times extremely short cycles of activities featuring actions
that involve the upper limbs. (CT>15 sec: low/absent risk; 8<CT<15 sec: medium risk; CT<8
sec: high risk)

Assumption: Being an indicator that is representative for the entire shift evaluation, a single
value of the ReM is computed for the entire set of tasks referring to the same data collected
about the awkward movements in the PoM computation phase.

Finally, the worst case among the three conditions is taken as a reference to get the
correspondent ReM value from the table provided below:

-Additional Risks Assessement: AdM-

The Additional Risk Multiplier embodies the incidence on the OCRA Index represented by
two components:

Presence of physio-mechanical dangerous conditions (PMC) in the working
environment: like the presence of vibrating tools or the operator's exposure to harmful
temperatures while performing a task. 8 factors are considered in the methodology and
the presence of each of them, with the relative %time exposure to this risk, is assessed
by observing the operator task's execution.
Organisational risk conditions (ORC) linked to operators working rhythm: it's not
strange to believe that the operator's pace may be affected by the work pace of the
machine in some processes. An ORC score of 0 is set if the operator is working
independently from the machine; a score of 8 if the operator works together with the
machine but flexibility in delays is allowed by buffers; a score of 12 is given if the
operator works synchronously with the machine. It's obvious to notice that ORC score is
a unique value referred to the entire shift.

The AdM is computed in two steps:

1. PMC Score computation for each task: relying on the table shown below, the PMC
score is computed as a function of %duration of a task relative to CT and of the type of
PMC:

1. AdM computation: the AdM is obtained for each task by firstly adding the ORC score to
the PMC score of each task and then associating the Total Risk Score to the
correspondent AdM by referring to the additional risk table, shown below;

Finally, the RTA is obtained by the following formula, for each task:

$RTAtask = CF ⋅ D ⋅ DoM ⋅ RcM ⋅ FoM ⋅ PoM ⋅ AdM ⋅ ReM$

The overall value of the RTA for the entire cycle is derived by summing all the RTAtask in
the cycle.

It's crucial to remember that, since both the RTA and ATA computation is performed at the
task level, both indicators are influenced by the "Body Area" that the operator uses to
accomplish each task: hence a value of the OCRAright and OCRAleft index must be
computed in a precise and coherent way. At this purpose we have formalised the following
assumptions:

Assunption 1: An operator can potentially perform each technical action (T.A.) either with
the Left or Right part of his/her upper limbs. However, if the T.A. involves the lifting or
handling of a heavy object (Hypothesis: weight of the object over 5kg), then he/she must
use both upper limbs.

Assumtpion 2: Once an operator has decided to make a T.A. with either the Right/Left/Both
areas of his/her upper limbs, he/she must perform all the remaining T.A. needed to make
the correspondent task with the same part of his/her body. E.g.: exchanging of objects from
Right to Left hand within a single task are avoided because can be time-consuming.

Prepare the input data

The Excel Spreadsheet Structure

In this section we will discuss the format of the OCRAinput excel spreadsheet, highlighting
the main characteristics of each table, the constraints on the data that the operator should
load and how to load the outputs by running the python code.

Organisational data: the Shiftdata Sheet

Inside the Shiftdata sheet, data involving the organisational parameters are loaded by the
operator who generally has good knowledge of his/her work schedule and his/her daily
working behaviour in terms of unofficial and scheduled breaks. All data regarding time
measures are expressed in minutes and the excel file will automatically compute in the
same sheet:

The Total net repetitive work time in the shift (D): derived by subtracting to the shift
duration the values of the three rows below it (look at the section on D of the chapter
1.1:"The number of actual technical actions performed in a shift: ATA" for the formula
explanation).
The Duration Multiplier (DuM): computed through the following if condition
implemented on excel:
$SE(B10<=120;2;SE(B10<=180;1,7;SE(B10<=240;1,5;SE(B10<=300;1,3;SE(B10<=360;B10;
SE(B10<=420;1,1;SE(B10<=480;1;SE(B10<=540;0,83;SE(B10<=600;0,66;SE(B10<=660;0,5
;SE(B10<=720;0,35;0,25)))))))))))$.

This function replicates the DuM table provided in the section on "DuM" of chapter 1.1. B10
is the cell reference for the figure "D". (Language in the excel solver: ITA)

Recovery Multiplier (RcM): computed through an if condition on excel that reflects the
RcM table provided in the section "RcM" of chapter 1.1:
$SE(B6<=0,5;1;SE(B6<=1;0,9;SE(B6<=1,5;0,85;SE(B6<=2;0,8;SE(B6<=2,5;0,75;SE(B6<=3;0,
7;SE(B6<=3,5;0,65;SE(B6<=4;0,6;SE(B6<=4,5;0,52;SE(B6<=5;0,45;SE(B6<=5,5;0,3;SE(B6<=
6;0,25;SE(B6<=6,5;0,17;0,1)))))))))))))$ where B6 is the cell reference for the figure
"Number of hours without a recovery period" provided as input by the operator.
Organizational Risk Score (ORS): computed through an if condition that reflects the
working rythm of the operator relative to the one of the machine (look at "ORC" section

in the chapter 1.2) : $SE(B9=0;1;SE(B9=1;8;SE(B9=2;12;"Errore")))$

where B9 represents the ORC code considered in the toolkit and inserted by the operator:

0: Free work pace
1: Work pace set by machine but with buffers
2: Work pace set entirely by the machine

Force and Postural data: the FPRdata Sheet

The FPRdata sheet represents the core of the ergonomic risk assessment of each operator's
task; as shown in the table above, the sheet gathers data regarding:

The Technical Actions performed by the operator inside one cycle, with the
correspondent code that identifies them in the process in order to avoid
misunderstandings when a same T.A. is executed more times in different tasks;
The correspondent Task Code that allows the python code to group the T.A. in one task
during the ergonomic risk assessment;
The Duration of each Technical Action involved in the cycle which is used to derive the
Cycle Time, required for both the RTA and the ATA computation;
The Force Load measured in each T.A. execution, expressed in values of the Borg CR-10
scale. Bear in mind that, due to the presence of ad hoc constraint on the data insertion,
the values of the force load can be either null or the ones of the Borg scale.
The Posture Codes for the 4 Upper Limb areas have been defined in this way:

Constraints on the data insertion for all these codes are already built in excel in order to
respect data consistency and to support rapid data processing in python.

Additional risk factors: the AdMdata sheet

The AdMdata sheet collects, at task level, information regarding the possible physio-
mechanical (P.M.) risk conditions of the operator. Due to the simplicity of the industrial case
on which this toolkit has been validated, (a set of mounting/dismounting operations not
requiring the usage on any peculiar tool a part from screwdrivers) we have formulated the
following weak assumption, that might be dropped in future improvements of the toolkit to
consider more general industrial cases:

Assumption: Considering a single task, at most one among the PM code can be assigned
by the operator i.e. at most one Physio-mechanical risk condition can happen. Following
the logic of building a consistent machine-readable input file for our toolkit, we have
considered 8 PM codes reflecting the possible P.M. risk conditions shown in the literatur
and in the "AdM" chapter 2.3.

The hidden sheets: Shiftpy and PSTpy

Two additional sheets are worth of mention in the Excel input file for the OCRA
methodology:

Shiftpy sheet: Not seen by the user interface, this hidden sheet as the role of supporting
the python toolkit to read easily the column names in the correspondent Shiftdata
sheet, ensuring a one-to-one correspondence of values and avoiding errors in the
reading phase.
PSTpy sheet: This specific sheet has no meaning for the user but it's crucial to speed
up the phase of Posture scores computation for all the T.A. in the cycle. It represents in
a single table the set of scores for all the posture areas of the body, with an increasing
value that is functional to the %time spend in the posture:

Execution and results

Output 1: OCRA partial scores

The first output provided by the OCRA digital tool is an overview of the partial scores for
each task, used to highlight the incidence of each working task on the overall value of the
OCRA index. As shown in the sample table below, in the Output 1 sheet, which is created
after one code run, the absolute and % values of the ATA and RTA of each task are
computed; in addition, a partial risk feedback at the task level is provided:

Output 2: Overall OCRA Index for the right and left body area

Lastly, the desired outcome of the OCRA methodology is provided in the Output 2 sheet: the
overall value for the light and left part of the upper limbs of the OCRA Index and the
correspondent Risk Range:

Toolkit application modes

The OCRA toolkit has been tested in two implementation modes:

• Independent OCRA execution with all data loaded by the operator

• Semi-Automated OCRA execution with task processing time estimation through MOST
suite integration on python.

The second mode allows an operator to derive the OCRA index in two steps:

1. Loading task data on the MOST input file transferring the Processing times and
Technical actions list on the OCRA excel file

2. Loading shift & postural data, by copying and pasting values from the FPRpy file
created ad hoc by the OCRA-MOST link python code, and run the OCRA toolkit to get
the OCRA index and the Cycle Total Risk

In this way the data collection time is significantly reduced, providing a faster toolkit
implementation given that the user has already been trained for handling the MOST toolkit
too. It's crucial to specify that the MOSt-OCRA link is represented by the FPRpy sheet that is
created ad hoc for this implementation mode once the OCRA-MOST data transfering code
has been run. In particular, the columns of task code, task name, move type and task
duration have all their values set as links to the FPRpy sheet.

Final Remarks

This guide provides key pillars for understanding the main theoretical concepts behind the
OCRA methodology; furthermore it supports the user in the correct interpretation of the
different OCRA sheets in excel, highlighting the main constraints and providing examples of
the outputs of the toolkit.

The properly take advantage of this methodology the user should bear in mind that:

This toolkit is based on assumptions that, despite being reasonable, don't perfectly
reflect the theoretical concepts of the OCRA method
The OCRA method works efficiently with tasks whom processing time are not equally
distributed along a cycle

To avoid uncontrollable errors in the python code execution, the user shouldn't change
the names in any column of each excel sheet;
To avoid wrong reading of the data in python, the user should check that all the
columns that have not been filled with data, have been left with empty values (not null
values). 200 rows have been set for the FPRdata sheet and the AdMdata sheet.

	1. Virtual Learning Factory Toolkit Framework

